To increase sustainability, NIH should yoke success rates to budgets

There’s a general consensus among biomedical scientists working in the United States that the NIH funding system is in a state of serious debilitation, if not yet on life support. After years of flat budgets and an ever-increasing number of PIs, success rates for R01s (the primary research grant mechanism at NIH) are at an all-time low, even as the average annual budget of awards has decreased in real dollars. The problem, unfortunately, is that there doesn’t appear to be an easy way to fix this problem. As many commentators have noted, there are some very deeply-rooted and systematic incentives that favor a perpetuation, and even exacerbation, of the current problems.

Last month, NIH released an RFI asking for suggestions for strategies to improve the impact and sustainability of biomedical research. This isn’t a formal program announcement, and doesn’t carry any real force at the moment, but it does at least signal some interest in making policy changes that could help prevent serious problems from getting worse.

Here’s my suggestion, which I’m also dutifully sending in to NIH in much-abridged form. The basic idea I’ll explore in this post is very simple: NIH should start yoking the success rates of proposals to the amount of money they request. The proposal is not meant to be a long-term solution, and is in some ways just a stopgap measure until more serious policy changes take place. But it’s a stopgap measure that could conceivably increase success rates by a few points for at least a few years, with relatively little implementation cost and few obvious downsides. So I think it’s at least worth considering.

The problem

At the moment, the NIH funding system arguably incentivizes PIs to ask for as much money as they think they can responsibly handle. To see why, let’s forget about NIH for the moment and consider, in day-to-day life, the typical relationship between investment cost and probability of investment (holding constant expected returns, which I’ll address later). Generally speaking, the two are inversely related. If a friend asks you to lend them $10, you might lend it without even asking them what they need it for. If, instead, your friend asks you for $100, you might want to know what it’s for, and you might also ask for some indication of how soon you’ll be paid back. But if your friend asks you for $10,000… well, you’re probably going to want to see a business plan and a legally-binding contract laying out a repayment schedule. There is a general understanding in most walks of life that if someone asks you to invest in them more heavily, they expect to see more evidence that you can deliver on whatever it is that you’re promising to do.

At NIH, things don’t work exactly that way. In many ways, there’s actually a positive incentive to ask for more money when writing a grant application. The perverse incentives play out at multiple levels–both across different grant mechanisms, and within the workhorse R01 mechanism. In the former case, a glance at the success rates for different R mechanisms reveals something that many PIs are, in my experience, completely unaware of: “small”-grant mechanisms like the R03 and R21 have lower–in some cases much lower–success rates than R01s at nearly all NIH institutes. This despite the fact that R21s and R03s are advertised as requiring little or no pilot data, and have low budget caps and short award durations (e.g., a maximum of $275,000 over  two years for the R21).

Now you might say: well, sure, if you have a grant program expressly designed for exploratory projects, it’s not surprising if the funding rate is much lower, because you’re probably getting an obscene number of applications from people who aren’t in a position to compete for a full-blown R01. But that’s not really it, because the number of R21 and R03 submissions is also much lower than the number of R01 submissions (e.g., in 2013, NCI funded 14.7% of 4,170 R01 applications, but only 10.6% of 2,557 R21 applications). In the grand scheme of things, the amount of money allocated to “small” grants at NIH pales in comparison to the amount allocated to R01s.

The reason that R21s and R03s aren’t much more common is… well, I actually don’t know. But the point is that the data suggest that, in general (though there are of course exceptions), it’s empirically a pretty bad idea to submit R03s and R21s (particularly if you’re an Early Stage Investigator). The succes rates for R01s are higher, you can ask for a lot more money, the project periods are longer, and the amount of work involved in writing the proposal is not dramatically higher. When you look at it that way, it’s not so surprising that PIs don’t submit that many R21/R03 applications: on average, they’re a bad time investment.

The same perverse incentives apply even if you focus on only R01 submissions. You might think that, other things being equal, NIH would prioritize proposals that ask for less money. That may well be true from an administrative standpoint, in the sense that, if two applications receive exactly the same score from a review panel, and are pretty similar in most respects, one imagines that most program officers would prefer to fund the proposal with the smaller budget. But the problem is that, in the grand scheme of things, discretionary awards (i.e., where the PO has the power to choose which award to fund) are a relatively small proportion of the total budget. The  majority of proposals get funded because they receive very good scores at review. And it turns out that, at review, asking for more money can actually work in a PI’s favor.

To see why, consider the official NIH guidelines for reviewing budgets. Reviewers are explicitly instructed not to judge a proposal’s merit based on its budget:

Unless specified otherwise in the Funding Opportunity Announcement, consideration of the budget and project period should not affect the overall impact score.

What should the reviewer do, in regards to the budget? Well, not much:

The reviewer should determine whether the requested budget is realistic for the conduct of the project proposed.

The explicit decoupling of budget from merit sets up a very serious problem, because if you allow yourself to ask for more money, you can also propose correspondingly grander work. By the time reviewers see your proposal, they have no real way of knowing whether you first decided on the minimum viable research program you want to run and then came up with an appropriate budget, or if you instead picked a largish number out of a hat and then proposed a perfectly reasonable (but large) amount of science you could do in order to fit that budget.

At the risk of making my own life a little bit more difficult, I’m willing to put my money where my mouth is on this point. For just about every proposal I’ve sent to NIH so far, I’ve asked for more money than I strictly need. Now, “need” is a tricky word in this context. I emphatically am not suggesting that I routinely ask NIH for more money just for the sake of having more money. I can honestly say that I’ve never asked for any funds that I didn’t think I could use responsibly in the pursuit of what I consider to be good science. But the trouble is, virtually every PI who’s ever applied for government funding will happily tell you that they could always do more good science if they just had more money. And, to a first order of approximation, they’re right. Unless a PI already has multiple major grants (which is a very small proportion of PIs at NIH), she or he probably could do more good work if given more money. There might be diminishing returns at some point, but for the most part it should not be terribly surprising if the average PI could increase her or his productivity level somewhat if given the money to hire more personnel, buy better equipment, run more experiments, and so on.

Unfortunately, the NIH budget is a zero-sum game. Every grant dollar I get is a grant dollar some other PI doesn’t get. So, when I go out and ask for a large-but-not-unreasonable amount of money, knowing full well that I could still run a research lab and get at least some good science done with less money, I am, in a sense, screwing everyone else over. Except that I’m not really screwing everyone else over, because everyone else is doing exactly the same thing I am. And the result is that we end up with a lot of PIs proposing a lot of very large projects. The PIs who win the grant lottery (because, increasingly, that’s what it is) will, generally, do a lot of good science with it. So it’s not so much that money is wasted; it’s more that it’s not distributed optimally, because the current system incentivizes people to ask for as much money as they think they can responsibly manage, rather than asking for the minimum amount they need to actually sustain a viable research enterprise.

The fix

The solution to this problem is, on paper, quite simple (which is probably why it’s only on paper). The way to induce PIs to ask for the minimum amount they think they can do their research with–thereby freeing up money for everyone else–is to explicitly yoke risk to reward, so that there’s a clearly discernible cost to asking for every increment in funding. You want $50,000 a year? Okay, that’s pretty easy to fund, so we’re not going to ask you a lot of questions. You want $500k/year? Well, hey, look, there are 10 people out in the hallway who each claim they can produce two papers a year on just $50k. So you’re going to have to explain why we should fund one of you instead of ten of them.

How would this proposal be implemented? There are many ways one could go about it, but here’s one that makes sense to me. First, we get rid of all of the research grant (R-type) mechanisms–except maybe for those that have some clearly differentiated purpose (e.g., R25s for training courses). Second, we introduce new R grant programs defined only by their budget caps and durations. For example, we might have R50s (max 50k/year for 2 years), R150s (max 150k/year for 3 years), R300s (max 300k/year for 5 years), and so on. The top tier would have no explicit cap, just like the current R01s. Third, we explicitly tie success rates to budget caps by deciding (and publicly disclosing) how much money we’re allocating to each tier. Each NIH institute would have to decide approximately what its payline for each tier would be for the next year–with the general constraint that the money would be allocated in such a way as to produce a strong inverse correlation between success rate and budget amount. So we might see, for instance, NIMH funding R50s at 50%, R150s at 28%, R300s at 22%, and R1000s at 8%. There would presumably be an initial period of fine-tuning, but over four or five award cycles, the system would almost certainly settle into a fairly stable equilibrium. Paylines would necessarily rise, because PIs would be incentivized to ask for only as much money as they truly need.

The objection(s)

Are there objections to the approach I’ve suggested above? Sure. Perhaps the most obvious concern will come from people who do genuinely “big” science–i.e., who work in fields where simply keeping a small lab running can cost hundreds of thousands of dollars a year. Researchers in such fields might complain that yoking success rates to budgets would mean that their colleagues who work on less expensive scientific problems have a major advantage when it comes to securing funding, and that Big Science types would consequently find it harder to survive.

There are several things to note about this objection. First, there’s actually no necessary reason why yoking success rates to budgets has to hurt larger applications. The only assumption this proposal depends on is that, at the moment, some proportion of budgets are inflated–i.e., there are many researchers who could operate successfully (if less comfortably) on smaller budgets than they currently do. The fact that many other investigators couldn’t operate on smaller budgets is immaterial. If 25% of NIH PIs voluntarily opt into a research grant program that guarantees higher success rates in return for smaller budgets, the other 75% of PIs could potentially benefit even if they do nothing at all (depending on how success rates are set). So if you currently run a lab that can’t possibly run on less than $500k/year, you don’t necessarily lose anything if one of your colleagues who was previously submitting grants with $250k annual budgets decides to start writing grants with $125k caps in return for, say, a 10% increase in funding likelihood. On the contrary, it could actually mean that there’s more money left over at the end of the day to fund your own big grants.

Now, it’s certainly true that NIH PIs who work in cheaper domains would have an easier time staying afloat than ones who work in expensive domains. And it’s also true that NIH could explicitly bias in favor of small grants by raising the success rates for small grants disproportionately. But that isn’t necessarily a problem. Personally, I would argue that a moderate bias towards small grants is actually a very good thing. Remember: funding is a zero-sum game. It may seem egalitarian to make success rates independent of operating costs, because it feels like we’re giving everyone a roughly equal shot at a career in biomedical science, no matter what science they like to do. But in another sense, we aren’t being egalitarian at all, because what we’re actually saying is that a scientist who likes to work on $500k problems is worth five times as much to the taxpayer as one who likes to work on $100k problems. That seems unlikely to be true in the general case (though it may certainly be true in a minority of cases), because it’s hard to believe that the cost of doing scientific research is very closely linked to the potential benefits to people’s health (i.e., there are almost certainly many very expensive scientific disciplines that don’t necessarily produce very big benefits to taxpayers). Personally, I don’t see anything wrong with setting a higher bar for research programs that cost more taxpayer money to fund. And note that I’m arguing against my own self-interest here, because my own research is relatively expensive (most of it involves software development, and the average developer salary is roughly double the average postdoc salary).

Lastly, it’s important to keep in mind that this proposal doesn’t in any way precludes the use of other, complementary, funding mechanisms. At present, NIH already routinely issues PAs and RFAs for proposals in areas of particular interest, or which for various reasons (including budget-related considerations) need to be considered separately from other applications. This wouldn’t change in any way under the proposed system. So, for example, if NIH officials decided that it was in the nation’s best interest to fund a round of $10 million grants to develop new heart transplant techniques, they could still issue a special call for such proposals. The plan I’ve sketched above would apply only to “normal” grants.

Okay, so that’s all I have. I was initially going to list a few other potential objections (and rebuttals), but decided to leave that for discussion. Please use the comments to tell me (and perhaps NIH) why this proposal would or wouldn’t work.

5 thoughts on “To increase sustainability, NIH should yoke success rates to budgets”

  1. Great idea, Tal. Any thoughts for how RFI responses can be coordinated, co-signed, etc. to increase the (perception of) momentum behind this idea?

  2. Thanks, Rick. Honestly I don’t know if there’s any way to do that. But if I had to guess, I would be surprised if this RFI gets more than a few hundred responses, so if a handful all make the same point, I imagine that will be fairly obvious. But maybe someone with firsthand experience handling RFIs on the other side could wade in…

  3. re: May 13, 2015 | Tal Yarkoni | “…yoke success rates to budgets”.|

    3 months later….

    Tal,

    Thank you for informing us on the unequal distribution of NIH grant funding, which just confirmed what most NIH grant lottery players already know: the lottery is rigged so that the rich getting richer.

    You present a very reasonable idea to incentivize PIs to request a smaller budgets for their science. Restructuring NIH R awards into tiered, budget-capped, R mechanisms that are inversely correlated to funding rates leads to more PIs funded over-all.

    What has the NIH’s response been to this great idea?

    1. Thanks Laura–though I’m not sure anything I wrote implies that the rich get richer as a result of the current policy. I mean, as a practical matter, it’s almost certainly true that the rich do get richer, since researchers with a lot of resources are going to be in a better position to generate more pilot data, preliminary findings, etc. But that’s going to be true under almost any kind of policy, and I don’t think the issues I discuss in this post have much to do with it. If anything, you could argue that researchers without any funding currently have a bigger incentive to apply for large awards (e.g., the existence of difference R01 paylines for new vs. experienced investigators represents an active effort by NIH to counteract favoritism towards established investigators). And there are a lot of very senior PIs currently experiencing their first lapse in funding, so I’m not sure that the harsh climate is disproportionately hurting the have-nots.

      I don’t know that NIH has responded to this particular proposal (or any other proposal that responded to the RFI mentioned in the post) anywhere. I imagine there will be continued discussions, reports, and perhaps calls for proposals that will come out of the RFI, but that will probably take time.

  4. One year later…. Nice post Tal, I think these are some good ideas for improving the system, or at least starting the discussion. A few years back I had a project that I thought would be a good fit for an R03. Naturally, I thought the success rate would be much higher than an R01, but the PO had to give me the low-down. Why have a funding mechanism if no one is going to use it? Research progress often relies on incremental baby steps, building on previous smaller successes: having an incentivizing funding structure that can both accommodate and facilitate this process makes sense. Otherwise I think a lot of new investigators with great nascent ideas, that just need “seed” money and a bit of encouragement from the NIH, would rather leave academia before enduring a postdoc long enough to hit the R01 lottery (or the K award raffle).

Leave a Reply