Category Archives: methods

What we can and can’t learn from the Many Labs Replication Project

By now you will most likely have heard about the “Many Labs” Replication Project (MLRP)–a 36-site, 12-country, 6,344-subject effort to try to replicate a variety of classical and not-so-classical findings in psychology. You probably already know that the authors tested a variety of different effects–some recent, some not so recent (the oldest one dates back to 1941!); some well-replicated, others not so much–and reported successful replications of 10 out of 13 effects (though with widely varying effect sizes).

By and large, the reception of the MLRP paper has been overwhelmingly positive. Setting aside for the moment what the findings actually mean (see also Rolf Zwaan’s earlier take), my sense is that most psychologists are united in agreement that the mere fact that researchers at 36 different sites were able to get together and run a common protocol testing 13 different effects is a pretty big deal, and bodes well for the field in light of recent concerns about iffy results and questionable research practices.

But not everyone’s convinced. There now seems to be something of an incipient backlash against replication. Or perhaps not so much against replication itself as against the notion that the ongoing replication efforts have any special significance. An in press paper by Joseph Cesario makes a case for deferring independent efforts to replicate an effect until the original effect is theoretically well understood (a suggestion I disagree with quite strongly, and plan to follow up on in a separate post). And a number of people have questioned, in blog comments and tweets, what the big deal is. A case in point:

I think the charitable way to interpret this sentiment is that Gilbert and others are concerned that some people might read too much into the fact that the MLRP successfully replicated 10 out of 13 effects. And clearly, at least some journalists have; for instance, Science News rather irresponsibly reported that the MLRP “offers reassurance” to psychologists. That said, I don’t think it’s fair to characterize this as anything close to a dominant reaction, and I don’t think I’ve seen any researchers react to the MLRP findings as if the 10/13 number means anything special. The piece Dan Gilbert linked to in his tweet, far from promoting “hysteria” about replication, is a Nature News article by the inimitable Ed Yong, and is characteristically careful and balanced. Far from trumpeting the fact that 10 out of 13 findings replicated, here’s a direct quote from the article:

Project co-leader Brian Nosek, a psychologist at the Center of Open Science in Charlottesville, Virginia, finds the outcomes encouraging. “It demonstrates that there are important effects in our field that are replicable, and consistently so,” he says. “But that doesn’t mean that 10 out of every 13 effects will replicate.”

Kahneman agrees. The study “appears to be extremely well done and entirely convincing”, he says, “although it is surely too early to draw extreme conclusions about entire fields of research from this single effort”.

Clearly, the mere fact that 10 out of 13 effects replicated is not in and of itself very interesting. For one thing (and as Ed Yong also noted in his article), a number of the effects were selected for inclusion in the project precisely because they had already been repeatedly replicated. Had the MLRP failed to replicate these effects–including, for instance, the seminal anchoring effect discovered by Kahneman and Tversky in the 1970s–the conclusion would likely have been that something was wrong with the methodology, and not that the anchoring effect doesn’t exist. So I think pretty much everyone can agree with Gilbert that we have most assuredly not learned, as a result of the MLRP, that there’s no replication crisis in psychology after all, and that roughly 76.9% of effects are replicable. Strictly speaking, all we know is that there are at least 10 effects in all of psychology that can be replicated. But that’s not exactly what one would call an earth-shaking revelation. What’s important to appreciate, however, is that the utility of the MLRP was never supposed to be about the number of successfully replicated effects. Rather, its value is tied to a number of other findings and demonstrations–some of which are very important, and have potentially big implications for the field at large. To wit:

1. The variance between effects is greater than the variance within effects.

Here’s the primary figure from the MLRP paper: Many Labs Replication Project results

Notice that the range of meta-analytic estimates for the different effect sizes (i.e., the solid green circles) is considerably larger than the range of individual estimates within a given effect. In other words, if you want to know how big a given estimate is likely to be, it’s more informative to know what effect is being studied than to know which of the 36 sites is doing the study. This may seem like a rather esoteric point, but it has important implications. Most notably, it speaks directly to the question of how much one should expect effect sizes to fluctuate from lab to lab when direct replications are attempted. If you’ve been following the controversy over the relative (non-)replicability of a number of high-profile social priming studies, you’ve probably noticed that a common defense researchers use when their findings fails to replicate is to claim that the underlying effect is very fragile, and can’t be expected to work in other researchers’ hands. What the MLRP shows, for a reasonable set of studies, is that there does not in fact appear to be a huge amount of site-to-site variability in effects. Take currency priming, for example–an effect in which priming participants with money supposedly leads them to express capitalistic beliefs and behaviors more strongly. Given a single failure to replicate the effect, one could plausibly argue that perhaps the effect was simply too fragile to reproduce consistently. But when 36 different sites all produce effects within a very narrow range–with a mean that is effectively zero–it becomes much harder to argue that the problem is that the effect is highly variable. To the contrary, the effect size estimates are remarkably consistent–it’s just that they’re consistently close to zero.

2. Larger effects show systematically greater variability.

You can see in the above figure that the larger an effect is, the more individual estimates appear to vary across sites. In one sense, this is not terribly surprising–you might already have the statistical intuition that the larger an effect is, the more reliable variance should be available to interact with other moderating variables. Conversely, if an effect is very small to begin with, it’s probably less likely that it could turn into a very large effect under certain circumstances–or that it might reverse direction entirely. But in another sense, this finding is actually quite unexpected, because, as noted above, there’s a general sense in the field that it’s the smaller effects that tend to be more fragile and heterogeneous. To the extent we can generalize from these 13 studies, these findings should give researchers some pause before attributing replication failures to invisible moderators that somehow manage to turn very robust effects (e.g., the original currency priming effect was nearly a full standard deviation in size) into nonexistent ones.

3. A number of seemingly important variables don’t systematically moderate effects.

There have long been expressions of concern over the potential impact of cultural and population differences on psychological effects. For instance, despite repeated demonstrations that internet samples typically provide data that are as good as conventional lab samples, many researchers continue to display a deep (and in my view, completely unwarranted) skepticism of findings obtained online. More reasonably, many researchers have worried that effects obtained using university students in Western nations–the so-called WEIRD samples–may not generalize to other social groups, cultures and countries. While the MLRP results are obviously not the last word on this debate, it’s instructive to note that factors like data acquisition approach (online vs. offline) and cultural background (US vs. non-US) didn’t appear to exert a systematic effect on results. This doesn’t mean that there are no culture-specific effects in psychology of course (there undoubtedly are), but simply that our default expectation should probably be that most basic effects will generalize across cultures to at least some extent.

4. Researchers have pretty good intuitions about which findings will replicate and which ones won’t.

At the risk of offending some researchers, I submit that the likelihood that a published finding will successfully replicate is correlated to some extent with (a) the field of study it falls under and (b) the journal in which it was originally published. For example, I don’t think it’s crazy to suggest that if one were to try to replicate all of the social priming studies and all of the vision studies published in Psychological Science in the last decade, the vision studies would replicate at a consistently higher rate. Anecdotal support for this intuition comes from a string of high-profile failures to replicate famous findings–e.g., John Bargh’s demonstration that priming participants with elderly concepts leads them to walk away from an experiment more slowly. However, the MLRP goes one better than anecdote, as it included a range of effects that clearly differ in their a priori plausibility. Fortuitously, just prior to publicly releasing the MLRP results, Brian Nosek asked the following question on Twitter:

Several researchers, including me, took Brian up on his offers; here are the responses:

As you can see, pretty much everyone that replied to Brian expressed skepticism about the two priming studies (#9 and #10 in Hal Pashler’s reply). There was less consensus on the third effect. (Actually, as it happens, there were actually ultimately only 2 failures to replicate–the third effect became statistically significant when samples were weighted properly.) Nonetheless, most of us picked Imagined Contact as number 3, which did in fact emerge as the smallest of the statistically significant effects. (It’s probably worth mentioning that I’d personally only heard of 4 or 5 of the 13 effects prior to reading their descriptions, so it’s not as though my response was based on a deep knowledge of prior work on these effects–I simply read the descriptions of the findings and gauged their plausibility accordingly.)

Admittedly, these are just two (or three) studies. It’s possible that the MLRP researchers just happened to pick two of the only high-profile priming studies that both seem highly counterintuitive and happen to be false positives. That said, I don’t really think these findings stand out from the mass of other counterintuitive priming studies in social psychology in any way. While we obviously shouldn’t conclude from this that no high-profile, counterintuitive priming studies will successfully replicate, the fact that a number of researchers were able to prospectively determine, with a high degree of accuracy, which effects would fail to replicate (and, among those that replicated, which were rather weak), is a pretty good sign that researchers’ intuitions about plausibility and replicability are pretty decent.

Personally, I’d love to see this principle pushed further, and formalized as a much broader tool for evaluating research findings. For example, one can imagine a website where researchers could publicly (and perhaps anonymously) register their degree of confidence in the likely replicability of any finding associated with a doi or PubMed ID. I think such a service would be hugely valuable–not only because it would help calibrate individual researchers’ intuitions and provide a sense of the field’s overall belief in an effect, but because it would provide a useful index of a finding’s importance in the event of successful replication (i.e., the authors of a well-replicated finding should probably receive more credit if the finding was initially viewed with great skepticism than if it was universally deemed rather obvious).

There are other potentially important findings in the MLRP paper that I haven’t mentioned here (see Rolf Zwaan’s blog post for additional points), but if nothing else, I hope this will help convince any remaining skeptics that this is indeed a landmark paper for psychology–even though the number of successful replications is itself largely meaningless.

Oh, there’s one last point worth mentioning, in light of the rather disagreeable tone of the debate surrounding previous replication efforts. If your findings are ever called into question by a multinational consortium of 36 research groups, this is exactly how you should respond:

Social psychologist Travis Carter of Colby College in Waterville, Maine, who led the original flag-priming study, says that he is disappointed but trusts Nosek’s team wholeheartedly, although he wants to review their data before commenting further. Behavioural scientist Eugene Caruso at the University of Chicago in Illinois, who led the original currency-priming study, says, “We should use this lack of replication to update our beliefs about the reliability and generalizability of this effect”, given the “vastly larger and more diverse sample” of the MLRP. Both researchers praised the initiative.

Carter and Caruso’s attitude towards the MLRP is really exemplary; people make mistakes all the time when doing research, and shouldn’t be held responsible for the mere act of publishing incorrect findings (excepting cases of deliberate misconduct or clear negligence). What matters is, as Caruso notes, whether and to what extent one shows a willingness to update one’s beliefs in response to countervailing evidence. That’s one mark of a good scientist.

the truth is not optional: five bad reasons (and one mediocre one) for defending the status quo

You could be forgiven for thinking that academic psychologists have all suddenly turned into professional whistleblowers. Everywhere you look, interesting new papers are cropping up purporting to describe this or that common-yet-shady methodological practice, and telling us what we can collectively do to solve the problem and improve the quality of the published literature. In just the last year or so, Uri Simonsohn introduced new techniques for detecting fraud, and used those tools to identify at least 3 cases of high-profile, unabashed data forgery. Simmons and colleagues reported simulations demonstrating that standard exploitation of research degrees of freedom in analysis can produce extremely high rates of false positive findings. Pashler and colleagues developed a “Psych file drawer” repository for tracking replication attempts. Several researchers raised trenchant questions about the veracity and/or magnitude of many high-profile psychological findings such as John Bargh’s famous social priming effects. Wicherts and colleagues showed that authors of psychology articles who are less willing to share their data upon request are more likely to make basic statistical errors in their papers. And so on and so forth. The flood shows no signs of abating; just last week, the APS journal Perspectives in Psychological Science announced that it’s introducing a new “Registered Replication Report” section that will commit to publishing pre-registered high-quality replication attempts, irrespective of their outcome.

Personally, I think these are all very welcome developments for psychological science. They’re solid indications that we psychologists are going to be able to police ourselves successfully in the face of some pretty serious problems, and they bode well for the long-term health of our discipline. My sense is that the majority of other researchers–perhaps the vast majority–share this sentiment. Still, as with any zeitgeist shift, there are always naysayers. In discussing these various developments and initiatives with other people, I’ve found myself arguing, with somewhat surprising frequency, with people who for various reasons think it’s not such a good thing that Uri Simonsohn is trying to catch fraudsters, or that social priming findings are being questioned, or that the consequences of flexible analyses are being exposed. Since many of the arguments I’ve come across tend to recur, I thought I’d summarize the most common ones here–along with the rebuttals I usually offer for why, with one possible exception, the arguments for giving a pass to sloppy-but-common methodological practices are not very compelling.

“But everyone does it, so how bad can it be?”

We typically assume that long-standing conventions must exist for some good reason, so when someone raises doubts about some widespread practice, it’s quite natural to question the person raising the doubts rather than the practice itself. Could it really, truly be (we say) that there’s something deeply strange and misguided about using p values? Is it really possible that the reporting practices converged on by thousands of researchers in tens of thousands of neuroimaging articles might leave something to be desired? Could failing to correct for the many researcher degrees of freedom associated with most datasets really inflate the false positive rate so dramatically?

The answer to all these questions, of course, is yes–or at least, we should allow that it could be yes. It is, in principle, entirely possible for an entire scientific field to regularly do things in a way that isn’t very good. There are domains where appeals to convention or consensus make perfect sense, because there are few good reasons to do things a certain way except inasmuch as other people do them the same way. If everyone else in your country drives on the right side of the road, you may want to consider driving on the right side of the road too. But science is not one of those domains. In science, there is no intrinsic benefit to doing things just for the sake of convention. In fact, almost by definition, major scientific advances are ones that tend to buck convention and suggest things that other researchers may not have considered possible or likely.

In the context of common methodological practice, it’s no defense at all to say but everyone does it this way, because there are usually relatively objective standards by which we can gauge the quality of our methods, and it’s readily apparent that there are many cases where the consensus approach leave something to be desired. For instance, you can’t really justify failing to correct for multiple comparisons when you report a single test that’s just barely significant at p < .05 on the grounds that nobody else corrects for multiple comparisons in your field. That may be a valid explanation for why your paper successfully got published (i.e., reviewers didn’t want to hold your feet to the fire for something they themselves are guilty of in their own work), but it’s not a valid defense of the actual science. If you run a t-test on randomly generated data 20 times, you will, on average, get a significant result, p < .05, once. It does no one any good to argue that because the convention in a field is to allow multiple testing–or to ignore statistical power, or to report only p values and not effect sizes, or to omit mention of conditions that didn’t ‘work’, and so on–it’s okay to ignore the issue. There’s a perfectly reasonable question as to whether it’s a smart career move to start imposing methodological rigor on your work unilaterally (see below), but there’s no question that the mere presence of consensus or convention surrounding a methodological practice does not make that practice okay from a scientific standpoint.

“But psychology would break if we could only report results that were truly predicted a priori!”

This is a defense that has some plausibility at first blush. It’s certainly true that if you force researchers to correct for multiple comparisons properly, and report the many analyses they actually conducted–and not just those that “worked”–a lot of stuff that used to get through the filter will now get caught in the net. So, by definition, it would be harder to detect unexpected effects in one’s data–even when those unexpected effects are, in some sense, ‘real’. But the important thing to keep in mind is that raising the bar for what constitutes a believable finding doesn’t actually prevent researchers from discovering unexpected new effects; all it means is that it becomes harder to report post-hoc results as pre-hoc results. It’s not at all clear why forcing researchers to put in more effort validating their own unexpected finding is a bad thing.

In fact, forcing researchers to go the extra mile in this way would have one exceedingly important benefit for the field as a whole: it would shift the onus of determining whether an unexpected result is plausible enough to warrant pursuing away from the community as a whole, and towards the individual researcher who discovered the result in the first place. As it stands right now, if I discover an unexpected result (p < .05!) that I can make up a compelling story for, there’s a reasonable chance I might be able to get that single result into a short paper in, say, Psychological Science. And reap all the benefits that attend getting a paper into a “high-impact” journal. So in practice there’s very little penalty to publishing questionable results, even if I myself am not entirely (or even mostly) convinced that those results are reliable. This state of affairs is, to put it mildly, not A Good Thing.

In contrast, if you as an editor or reviewer start insisting that I run another study that directly tests and replicates my unexpected finding before you’re willing to publish my result, I now actually have something at stake. Because it takes time and money to run new studies, I’m probably not going to bother to follow up on my unexpected finding unless I really believe it. Which is exactly as it should be: I’m the guy who discovered the effect, and I know about all the corners I have or haven’t cut in order to produce it; so if anyone should make the decision about whether to spend more taxpayer money chasing the result, it should be me. You, as the reviewer, are not in a great position to know how plausible the effect truly is, because you have no idea how many different types of analyses I attempted before I got something to ‘work’, or how many failed studies I ran that I didn’t tell you about. Given the huge asymmetry in information, it seems perfectly reasonable for reviewers to say, You think you have a really cool and unexpected effect that you found a compelling story for? Great; go and directly replicate it yourself and then we’ll talk.

“But mistakes happen, and people could get falsely accused!”

Some people don’t like the idea of a guy like Simonsohn running around and busting people’s data fabrication operations for the simple reason that they worry that the kind of approach Simonsohn used to detect fraud is just not that well-tested, and that if we’re not careful, innocent people could get swept up in the net. I think this concern stems from fundamentally good intentions, but once again, I think it’s also misguided.

For one thing, it’s important to note that, despite all the press, Simonsohn hasn’t actually done anything qualitatively different from what other whistleblowers or skeptics have done in the past. He may have suggested new techniques that improve the efficiency with which cheating can be detected, but it’s not as though he invented the ability to report or investigate other researchers for suspected misconduct. Researchers suspicious of other researchers’ findings have always used qualitatively similar arguments to raise concerns. They’ve said things like, hey, look, this is a pattern of data that just couldn’t arise by chance, or, the numbers are too similar across different conditions.

More to the point, perhaps, no one is seriously suggesting that independent observers shouldn’t be allowed to raise their concerns about possible misconduct with journal editors, professional organizations, and universities. There really isn’t any viable alternative. Naysayers who worry that innocent people might end up ensnared by false accusations presumably aren’t suggesting that we do away with all of the existing mechanisms for ensuring accountability; but since the role of people like Simonsohn is only to raise suspicion and provide evidence (and not to do the actual investigating or firing), it’s clear that there’s no way to regulate this type of behavior even if we wanted to (which I would argue we don’t). If I wanted to spend the rest of my life scanning the statistical minutiae of psychology articles for evidence of misconduct and reporting it to the appropriate authorities (and I can assure you that I most certainly don’t), there would be nothing anyone could do to stop me, nor should there be. Remember that accusing someone of misconduct is something anyone can do, but establishing that misconduct has actually occurred is a serious task that requires careful internal investigation. No one–certainly not Simonsohn–is suggesting that a routine statistical test should be all it takes to end someone’s career. In fact, Simonsohn himself has noted that he identified a 4th case of likely fraud that he dutifully reported to the appropriate authorities only to be met with complete silence. Given all the incentives universities and journals have to look the other way when accusations of fraud are made, I suspect we should be much more concerned about the false negative rate than the false positive rate when it comes to fraud.

“But it hurts the public’s perception of our field!”

Sometimes people argue that even if the field does have some serious methodological problems, we still shouldn’t discuss them publicly, because doing so is likely to instill a somewhat negative view of psychological research in the public at large. The unspoken implication being that, if the public starts to lose confidence in psychology, fewer students will enroll in psychology courses, fewer faculty positions will be created to teach students, and grant funding to psychologists will decrease. So, by airing our dirty laundry in public, we’re only hurting ourselves. I had an email exchange with a well-known researcher to exactly this effect a few years back in the aftermath of the Vul et al “voodoo correlations” paper–a paper I commented on to the effect that the problem was even worse than suggested. The argument my correspondent raised was, in effect, that we (i.e., neuroimaging researchers) are all at the mercy of agencies like NIH to keep us employed, and if it starts to look like we’re clowning around, the unemployment rate for people with PhDs in cognitive neuroscience might start to rise precipitously.

While I obviously wouldn’t want anyone to lose their job or their funding solely because of a change in public perception, I can’t say I’m very sympathetic to this kind of argument. The problem is that it places short-term preservation of the status quo above both the long-term health of the field and the public’s interest. For one thing, I think you have to be quite optimistic to believe that some of the questionable methodological practices that are relatively widespread in psychology (data snooping, selective reporting, etc.) are going to sort themselves out naturally if we just look the other way and let nature run its course. The obvious reason for skepticism in this regard is that many of the same criticisms have been around for decades, and it’s not clear that anything much has improved. Maybe the best example of this is Gigerenzer and Sedlmeier’s 1989 paper entitled “Do studies of statistical power have an effect on the power of studies?“, in which the authors convincingly showed that despite three decades of work by luminaries like Jacob Cohen advocating power analyses, statistical power had not risen appreciably in psychology studies. The presence of such unwelcome demonstrations suggests that sweeping our problems under the rug in the hopes that someone (the mice?) will unobtrusively take care of them for us is wishful thinking.

In any case, even if problems did tend to solve themselves when hidden away from the prying eyes of the media and public, the bigger problem with what we might call the “saving face” defense is that it is, fundamentally, an abuse of taxypayers’ trust. As with so many other things, Richard Feynman summed up the issue eloquently in his famous Cargo Cult science commencement speech:

For example, I was a little surprised when I was talking to a friend who was going to go on the radio. He does work on cosmology and astronomy, and he wondered how he would explain what the applications of this work were. “Well,” I said, “there aren’t any.” He said, “Yes, but then we won’t get support for more research of this kind.” I think that’s kind of dishonest. If you’re representing yourself as a scientist, then you should explain to the layman what you’re doing–and if they don’t want to support you under those circumstances, then that’s their decision.

The fact of the matter is that our livelihoods as researchers depend directly on the goodwill of the public. And the taxpayers are not funding our research so that we can “discover” interesting-sounding but ultimately unreplicable effects. They’re funding our research so that we can learn more about the human mind and hopefully be able to fix it when it breaks. If a large part of the profession is routinely employing practices that are at odds with those goals, it’s not clear why taxpayers should be footing the bill. From this perspective, it might actually be a good thing for the field to revise its standards, even if (in the worst-case scenario) that causes a short-term contraction in employment.

“But unreliable effects will just fail to replicate, so what’s the big deal?”

This is a surprisingly common defense of sloppy methodology, maybe the single most common one. It’s also an enormous cop-out, since it pre-empts the need to think seriously about what you’re doing in the short term. The idea is that, since no single study is definitive, and a consensus about the reality or magnitude of most effects usually doesn’t develop until many studies have been conducted, it’s reasonable to impose a fairly low bar on initial reports and then wait and see what happens in subsequent replication efforts.

I think this is a nice ideal, but things just don’t seem to work out that way in practice. For one thing, there doesn’t seem to be much of a penalty for publishing high-profile results that later fail to replicate. The reason, I suspect, is that we incline to give researchers the benefit of the doubt: surely (we say to ourselves), Jane Doe did her best, and we like Jane, so why should we question the work she produces? If we’re really so skeptical about her findings, shouldn’t we go replicate them ourselves, or wait for someone else to do it?

While this seems like an agreeable and fair-minded attitude, it isn’t actually a terribly good way to look at things. Granted, if you really did put in your best effort–dotted all your i’s and crossed all your t’s–and still ended up reporting a false result, we shouldn’t punish you for it. I don’t think anyone is seriously suggesting that researchers who inadvertently publish false findings should be ostracized or shunned. On the other hand, it’s not clear why we should continue to celebrate scientists who ‘discover’ interesting effects that later turn out not to replicate. If someone builds a career on the discovery of one or more seemingly important findings, and those findings later turn out to be wrong, the appropriate attitude is to update our beliefs about the merit of that person’s work. As it stands, we rarely seem to do this.

In any case, the bigger problem with appeals to replication is that the delay between initial publication of an exciting finding and subsequent consensus disconfirmation can be very long, and often spans entire careers. Waiting decades for history to prove an influential idea wrong is a very bad idea if the available alternative is to nip the idea in the bud by requiring stronger evidence up front.

There are many notable examples of this in the literature. A well-publicized recent one is John Bargh’s work on the motor effects of priming people with elderly stereotypes–namely, that priming people with words related to old age makes them walk away from the experiment more slowly. Bargh’s original paper was published in 1996, and according to Google Scholar, has now been cited over 2,000 times. It has undoubtedly been hugely influential in directing many psychologists’ research programs in certain directions (in many cases, in directions that are equally counterintuitive and also now seem open to question). And yet it’s taken over 15 years for a consensus to develop that the original effect is at the very least much smaller in magnitude than originally reported, and potentially so small as to be, for all intents and purposes, “not real”. I don’t know who reviewed Bargh’s paper back in 1996, but I suspect that if they ever considered the seemingly implausible size of the effect being reported, they might have well thought to themselves, well, I’m not sure I believe it, but that’s okay–time will tell. Time did tell, of course; but time is kind of lazy, so it took fifteen years for it to tell. In an alternate universe, a reviewer might have said, well, this is a striking finding, but the effect seems implausibly large; I would like you to try to directly replicate it in your lab with a much larger sample first. I recognize that this is onerous and annoying, but my primary responsibility is to ensure that only reliable findings get into the literature, and inconveniencing you seems like a small price to pay. Plus, if the effect is really what you say it is, people will be all the more likely to believe you later on.

Or take the actor-observer asymmetry, which appears in just about every introductory psychology textbook written in the last 20 – 30 years. It states that people are relatively more likely to attribute their own behavior to situational factors, and relatively more likely to attribute other agents’ behaviors to those agents’ dispositions. When I slip and fall, it’s because the floor was wet; when you slip and fall, it’s because you’re dumb and clumsy. This putative asymmetry was introduced and discussed at length in a book by Jones and Nisbett in 1971, and hundreds of studies have investigated it at this point. And yet a 2006 meta-analysis by Malle suggested that the cumulative evidence for the actor-observer asymmetry is actually very weak. There are some specific circumstances under which you might see something like the postulated effect, but what is quite clear is that it’s nowhere near strong enough an effect to justify being routinely invoked by psychologists and even laypeople to explain individual episodes of behavior. Unfortunately, at this point it’s almost impossible to dislodge the actor-observer asymmetry from the psyche of most researchers–a reality underscored by the fact that the Jones and Nisbett book has been cited nearly 3,000 times, whereas the 1996 meta-analysis has been cited only 96 times (a very low rate for an important and well-executed meta-analysis published in Psychological Bulletin).

The fact that it can take many years–whether 15 or 45–for a literature to build up to the point where we’re even in a position to suggest with any confidence that an initially exciting finding could be wrong means that we should be very hesitant to appeal to long-term replication as an arbiter of truth. Replication may be the gold standard in the very long term, but in the short and medium term, appealing to replication is a huge cop-out. If you can see problems with an analysis right now that cast aspersions on a study’s results, it’s an abdication of responsibility to downplay your concerns and wait for someone else to come along and spend a lot more time and money trying to replicate the study. You should point out now why you have concerns. If the authors can address them, the results will look all the better for it. And if the authors can’t address your concerns, well, then, you’ve just done science a service. If it helps, don’t think of it as a matter of saying mean things about someone else’s work, or of asserting your own ego; think of it as potentially preventing a lot of very smart people from wasting a lot of time chasing down garden paths–and also saving a lot of taxpayer money. Remember that our job as scientists is not to make other scientists’ lives easy in the hopes they’ll repay the favor when we submit our own papers; it’s to establish and apply standards that produce convergence on the truth in the shortest amount of time possible.

“But it would hurt my career to be meticulously honest about everything I do!”

Unlike the other considerations listed above, I think the concern that being honest carries a price when it comes to do doing research has a good deal of merit to it. Given the aforementioned delay between initial publication and later disconfirmation of findings (which even in the best case is usually longer than the delay between obtaining a tenure-track position and coming up for tenure), researchers have many incentives to emphasize expediency and good story-telling over accuracy, and it would be disingenuous to suggest otherwise. No malevolence or outright fraud is implied here, mind you; the point is just that if you keep second-guessing and double-checking your analyses, or insist on routinely collecting more data than other researchers might think is necessary, you will very often find that results that could have made a bit of a splash given less rigor are actually not particularly interesting upon careful cross-examination. Which means that researchers who have, shall we say, less of a natural inclination to second-guess, double-check, and cross-examine their own work will, to some degree, be more likely to publish results that make a bit of a splash (it would be nice to believe that pre-publication peer review filters out sloppy work, but empirically, it just ain’t so). So this is a classic tragedy of the commons: what’s good for a given individual, career-wise, is clearly bad for the community as a whole.

I wish I had a good solution to this problem, but I don’t think there are any quick fixes. The long-term solution, as many people have observed, is to restructure the incentives governing scientific research in such a way that individual and communal benefits are directly aligned. Unfortunately, that’s easier said than done. I’ve written a lot both in papers (1, 2, 3) and on this blog (see posts linked here) about various ways we might achieve this kind of realignment, but what’s clear is that it will be a long and difficult process. For the foreseeable future, it will continue to be an understandable though highly lamentable defense to say that the cost of maintaining a career in science is that one sometimes has to play the game the same way everyone else plays the game, even if it’s clear that the rules everyone plays by are detrimental to the communal good.

 

Anyway, this may all sound a bit depressing, but I really don’t think it should be taken as such. Personally I’m actually very optimistic about the prospects for large-scale changes in the way we produce and evaluate science within the next few years. I do think we’re going to collectively figure out how to do science in a way that directly rewards people for employing research practices that are maximally beneficial to the scientific community as a whole. But I also think that for this kind of change to take place, we first need to accept that many of the defenses we routinely give for using iffy methodological practices are just not all that compelling.

bio-, chemo-, neuro-, eco-informatics… why no psycho-?

The latest issue of the APS Observer features a special section on methods. I contributed a piece discussing the need for a full-fledged discipline of psychoinformatics:

Scientific progress depends on our ability to harness and apply modern information technology. Many advances in the biological and social sciences now emerge directly from advances in the large-scale acquisition, management, and synthesis of scientific data. The application of information technology to science isn’t just a happy accident; it’s also a field in its own right — one commonly referred to as informatics. Prefix that term with a Greek root or two and you get other terms like bioinformatics, neuroinformatics, and ecoinformatics — all well-established fields responsible for many of the most exciting recent discoveries in their parent disciplines.

Curiously, following the same convention also gives us a field called psychoinformatics — which, if you believe Google, doesn’t exist at all (a search for the term returns only 500 hits as of this writing; Figure 1). The discrepancy is surprising, because labels aside, it’s clear that psychological scientists are already harnessing information technology in powerful and creative ways — often reshaping the very way we collect, organize, and synthesize our data.

Here’s the picture that’s worth, oh, at least ten or fifteen words:

Figure 1. Number of Google search hits for informatics-related terms, by prefix.

You can read the rest of the piece here if you’re so inclined. Check out some of the other articles too; I particularly like Denny Borsboom’s piece on network analysis. EDIT: and Anna Mikulak’s piece on optogenetics! I forgot the piece on optogenetics! How can you not love optogenetics!

a human and a monkey walk into an fMRI scanner…

Tor Wager and I have a “news and views” piece in Nature Methods this week; we discuss a paper by Mantini and colleagues (in the same issue) introducing a new method for identifying functional brain homologies across different species–essentially, identifying brain regions in humans and monkeys that seem to do roughly the same thing even if they’re not located in the same place anatomically. Mantini et al make some fairly strong claims about what their approach tells us about the evolution of the human brain (namely, that some cortical regions have undergone expansion relative to monkeys, while others have adapted substantively new functions). For reasons we articulate in our commentary, I’m personally not so convinced by the substantive conclusions, but I do think the core idea underlying the method is a very clever and potentially useful one:

Their technique, interspecies activity correlation (ISAC), uses functional magnetic resonance imaging (fMRI) to identify brain regions in which humans and monkeys exposed to the same dynamic stimulus—a 30-minute clip from the movie The Good, the Bad and the Ugly—show correlated patterns of activity (Fig. 1). The premise is that homologous regions should have similar patterns of activity across species. For example, a brain region sensitive to a particular configuration of features, including visual motion, hands, faces, object and others, should show a similar time course of activity in both species—even if its anatomical location differs across species and even if the precise features that drive the area’s neurons have not yet been specified.

Mo Costandi has more on the paper in an excellent Guardian piece (and I’m not just saying that because he quoted me a few times). All in all, I think it’s a very exciting method, and it’ll be interesting to see how it’s applied in future studies. I think there’s a fairly broad class of potential applications based loosely around the same idea of searching for correlated patterns. It’s an idea that’s already been used by Uri Hasson (an author on the Mantini et al paper) and others fairly widely in the fMRI literature to identify functional correspondences across different subjects; but you can easily imagine conceptually similar applications in other fields too–e.g., correlating gene expression profiles across species in order to identify structural homologies (actually, one could probably try this out pretty easily using the mouse and human data available in the Allen Brain Atlas).

ResearchBlogging.orgMantini D, Hasson U, Betti V, Perrucci MG, Romani GL, Corbetta M, Orban GA, & Vanduffel W (2012). Interspecies activity correlations reveal functional correspondence between monkey and human brain areas. Nature methods PMID: 22306809

Wager, T., & Yarkoni, T. (2012). Establishing homology between monkey and human brains Nature Methods DOI: 10.1038/nmeth.1869

large-scale data exploration, MIC-style

UPDATE 2/8/2012: Simon & Tibshirani posted a critical commentary on this paper here. See additional thoughts here.

Real-world data are messy. Relationships between two variables can take on an infinite number of forms, and while one doesn’t see, say, umbrella-shaped data very often, strange things can happen. When scientists talk about correlations or associations between variables, they’re usually referring to one very specific form of relationship–namely, a linear one. The assumption is that most associations between pairs of variables are reasonably well captured by positing that one variable increases in proportion to the other, with some added noise. In reality, of course, many associations aren’t linear, or even approximately so. For instance, many associations are cyclical (e.g., hours at work versus day of week), or curvilinear (e.g., heart attacks become precipitously more frequent past middle age), and so on.

Detecting a non-linear association is potentially just as easy as detecting a linear relationship if we know the form of that association up front. But there, of course, lies the rub: we generally don’t have strong intuitions about how most variables are likely to be non-linearly related. A more typical situation in many ‘big data’ scientific disciplines is that we have a giant dataset full of thousands or millions of observations and hundreds or thousands of variables, and we want to determine which of the many associations between different variables are potentially important–without knowing anything about their potential shape. The problem, then, is that traditional measures of association don’t work very well; they’re only likely to detect associations to the extent that those associations approximate a linear fit.

A new paper in Science by David Reshef and colleagues (and as a friend pointed out, it’s a feat in and of itself just to get a statistics paper into Science) directly targets this data mining problem by introducing an elegant new measure of association called the Maximal Information Coefficient (MIC; see also the authors’ project website).  The clever insight at the core of the paper is that one can detect a systematic (i.e., non-random) relationship between two variables by quantifying and normalizing their maximal mutual information. Mutual information (MI) is an information theory measure of how much information you have about one variable given knowledge of the other. You have high MI when you can accurately predict the level of one variable given knowledge of the other, and low MI when knowledge of one variable is unhelpful in predicting the other. Importantly, unlike other measures (e.g., the correlation coefficient), MI makes no assumptions about the form of the relationship between the variables; one can have high mutual information for non-linear associations as well as linear ones.

MI and various derivative measures have been around for a long time now; what’s innovative about the Reshef et al paper is that the authors figured out a way to efficiently estimate and normalize the maximal MI one can obtain for any two variables. The very clever approach the authors use is to overlay a series of grids on top of the data, and to keep altering the resolution of the grid and moving its lines around until one obtains the maximum possible MI. In essence, it’s like dropping a wire mesh on top of a scatterplot and playing with it until you’ve boxed in all of the data points in the most informative way possible. And the neat thing is, you can apply the technique to any kind of data at all, and capture a very broad range of systematic relationships, not just linear ones.

To give you an intuitive sense of how this works, consider this Figure from the supplemental material:

The underlying function here is sinusoidal. This is a potentially common type of association in many domains–e.g., it might explain the cyclical relationship between, say, coffee intake and hour of day (more coffee in the early morning and afternoon; less in between). But the linear correlation is essentially zero, so a typical analysis wouldn’t pick it up at all. On the other hand, the relationship itself is perfectly deterministic; if we can correctly identify the generative function in this case, we would have perfect information about Y given X. The question is how to capture this intuition algorithmically–especially given that real data are noisy.

This is where Reshef et al’s grid-based approach comes in. In the left panel above, you have a 2 x 8 grid overlaid on a sinusoidal function (the use of a 2 x 8 resolution here is just illustrative; the algorithm actually produces estimates for a wide range of grid resolutions). Even though it’s the optimal grid of that particular resolution, it still isn’t very good: knowing which row a particular point along the line falls into doesn’t tell you a whole lot about which column it falls into, and vice versa. In other words, mutual information is low. By contrast, the optimal 8 x 2 grid on the right side of the figure has a (perfect) MIC of 1: if you know which row in the grid a point on the line falls into, you can also determine which column it falls into with perfect accuracy. So the MIC approach will detect that there’s a perfectly systematic relationship between these two variables without any trouble, whereas the standard pearson correlation would be 0 (i.e., no relation at all). There are a couple of other steps involved (e.g., one needs to normalize the MIC to account for differences in grid resolution), but that’s the gist of it.

If the idea seems surprisingly simple, it is. But as with many very good ideas, hindsight is 20/20; it’s an idea that seems obvious once you hear it, but clearly wasn’t trivial to come up with (or someone would have done it a long time ago!). And of course, the simplicity of the core idea also shouldn’t blind us to the fact that there was undoubtedly a lot of very sophisticated work involved in figuring out how to normalize and bound the measure, provin that the approach works and implementing a dynamic algorithm capable of computing good MIC estimates in a reasonable amount of time (this Harvard Gazette article suggests Reshef and colleagues worked on the various problems for three years).

The utility of MIC and its improvement over existing measures is probably best captured in Figure 2 from the paper:

Panel A shows the values one obtains with different measures when trying to capture different kinds of noiseless relationships (e.g., linear, exponential, and sinusoidal ones). The key point is that MIC assigns a value of 1 (the maximum) to every kind of association, whereas no other measure is capable of detecting the same range of associations with the same degree of sensitivity (and most fail horribly). By contrast, when given random data, MIC produces a value that tends towards zero (though it’s still not quite zero, a point I’ll come back to later). So what you effectively have is a measure that, with some caveats, can capture a very broad range of associations and place them on the same metric. The latter aspect is nicely captured in Panel G, which gives one a sense of what real (i.e., noisy) data corresponding to different MIC levels would look like. The main point is that, unlike other measures, a given value can correspond to very different types of associations. Admittedly, this may be a mixed blessing, since the flip side is that knowing the MIC value tells you almost nothing about what the association actually looks like (though Anscombe’s Quartet famously demonstrates that even a linear correlation can be misleading in this respect). But on the whole, I think it represents a potentially big advance in our ability to detect novel associations in a data-driven way.

Having introduced and explained the method, Reshef et al then go on to apply it to 4 very different datasets. I’ll just focus on one here–a set of global indicators from the World Health Organization (WHO). The data set contains 357 variables, or 63,546 variable pairs. When plotting MIC against the Pearson correlation coefficient the data look like this (panel A; click to blow up the figure):

The main point to note is that while MIC detects most strong linear effects (e.g., panel D), it also detects quite a few associations that have low linear correlations (e.g., E, F, and G). Reshef et al note that many of these effects have sensible interpretations (e.g., they argue that the left trend line in panel F reflects predominantly Pacific Island nations where obesity is culturally valued, and hence increases with income), but would be completely overlooked by an automated data mining approach that focuses only on linear correlations. They go on to report a number of other interesting examples ranging from analyses of gut bacteria to baseball statistics. All in all, it’s a compelling demonstration of a new metric that could potentially play an important role in large-scale data mining analyses going forward.

That said, while the paper clearly represents an important advance for large-scale data mining efforts, it’s also quite light on caveats and limitations (even for a length-constrained Science paper). Some potential concerns that come to mind:

  • Reshef et al are understandably going to put their best foot forward, so we can expect that the ‘representative’ examples they display (e.g., the WHO scatter plots above) are among the cleanest effects in the data, and aren’t necessarily typical. There’s nothing wrong with this, but it’s worth keeping in mind that much (and perhaps most) of the time, the associations MIC identifies aren’t going to be quite so clear-cut. Reshef’s et al approach can help identify potentially interesting associations, but once they’re identified, it’s still up to the investigator to figure out how to characterize them.
  • MIC is a (potentially quite heavily) biased measure. While it’s true, as the authors suggest, that it will “tend to 0 for statistically independent variables”, in most situations, the observed value will be substantially larger than 0 even when variables are completely uncorrelated. This falls directly out of the ‘M’ in MIC, because when you take the maximal value from some larger search space as your estimate, you’re almost invariably going to end up capitalizing on chance to some degree. MIC will only tend to 0 when the sample size is very large; as this figure (from the supplemental material) shows, even with a sample size of n = 204, the MIC for uncorrelated variables will tend to hover somewhere around .15 for the parameterization used throughout the paper (the red line):
    This isn’t a huge deal, but it does mean that interpretation of small MIC values is going to be very difficult in practice, since the lower end of the distribution is going to depend heavily on sample size. And it’s quite unpleasant to have a putatively standardized metric of effect size whose interpretation depends to some extent on sample parameters.
  • Reshef et al don’t report any analyses quantifying the sensitivity of MIC compared to conventional metrics like Pearson’s correlation coefficient. Obviously, MIC can pick up on effects Pearson can’t; but a crucial question is whether MIC shows comparable sensitivity when effects are linear. Similarly, we don’t know how well MIC performs when sample sizes are substantially smaller than those Reshef et al use in their simulations and empirical analyses. If it breaks down with n’s on the order of, say, 50 – 100, that would be important to know. So it would be great to see follow-up work characterizing performance under such circumstances–preferably before a flood of papers is published that all use MIC to do data mining in relatively small data sets.
  • As Andrew Gelman points out here, it’s not entirely clear that one wants a measure that gives a high r-square-like value for pretty much any non-random association between variables. For instance, a perfect circle would get an MIC of 1 at the limit, which is potentially weird given that you can’t never deterministically predict y from x. I don’t have a strong feeling about this one way or the other, but can see why this might bother someone.

Caveats aside though, from my perspective–as someone who likes to play with very large datasets but isn’t terribly statistically savvy–the Reshef et al paper seems like a really impressive piece of work that could have a big impact on at least some kinds of data mining analyses. I’d be curious to hear what more quantitatively sophisticated folks have to say.

ResearchBlogging.org
Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, Lander ES, Mitzenmacher M, & Sabeti PC (2011). Detecting novel associations in large data sets. Science (New York, N.Y.), 334 (6062), 1518-24 PMID: 22174245

see me flub my powerpoint slides on NIF tv!

 

UPDATE: the webcast is now archived here for posterity.

This is kind of late notice and probably of interest to few people, but I’m giving the NIF webinar tomorrow (or today, depending on your time zone–either way, we’re talking about November 1st). I’ll be talking about Neurosynth, and focusing in particular on the methods and data, since that’s what NIF (which stands for Neuroscience Information Framework) is all about. Assuming all goes well, the webinar should start at 11 am PST. But since I haven’t done a webcast of any kind before, and have a surprising knack for breaking audiovisual equipment at a distance, all may not go well. Which I suppose could make for a more interesting presentation. In any case, here’s the abstract:

The explosive growth of the human neuroimaging literature has led to major advances in understanding of human brain function, but has also made aggregation and synthesis of neuroimaging findings increasingly difficult. In this webinar, I will describe a highly automated brain mapping framework called NeuroSynth that uses text mining, meta-analysis and machine learning techniques to generate a large database of mappings between neural and cognitive states. The NeuroSynth framework can be used to automatically conduct large-scale, high-quality neuroimaging meta-analyses, address long-standing inferential problems in the neuroimaging literature (e.g., how to infer cognitive states from distributed activity patterns), and support accurate ‘decoding’ of broad cognitive states from brain activity in both entire studies and individual human subjects. This webinar will focus on (a) the methods used to extract the data, (b) the structure of the resulting (publicly available) datasets, and (c) some major limitations of the current implementation. If time allows, I’ll also provide a walk-through of the associated web interface (http://neurosynth.org) and will provide concrete examples of some potential applications of the framework.

There’s some more info (including details about how to connect, which might be important) here. And now I’m off to prepare my slides. And script some evasive and totally non-committal answers to deploy in case of difficult questions from the peanut gallery respected audience.

Too much p = .048? Towards partial automation of scientific evaluation

Distinguishing good science from bad science isn’t an easy thing to do. One big problem is that what constitutes ‘good’ work is, to a large extent, subjective; I might love a paper you hate, or vice versa. Another problem is that science is a cumulative enterprise, and the value of each discovery is, in some sense, determined by how much of an impact that discovery has on subsequent work–something that often only becomes apparent years or even decades after the fact. So, to an uncomfortable extent, evaluating scientific work involves a good deal of guesswork and personal preference, which is probably why scientists tend to fall back on things like citation counts and journal impact factors as tools for assessing the quality of someone’s work. We know it’s not a great way to do things, but it’s not always clear how else we could do better.

Fortunately, there are many aspects of scientific research that don’t depend on subjective preferences or require us to suspend judgment for ten or fifteen years. In particular, methodological aspects of a paper can often be evaluated in a (relatively) objective way, and strengths or weaknesses of particular experimental designs are often readily discernible. For instance, in psychology, pretty much everyone agrees that large samples are generally better than small samples, reliable measures are better than unreliable measures, representative samples are better than WEIRD ones, and so on. The trouble when it comes to evaluating the methodological quality of most work isn’t so much that there’s rampant disagreement between reviewers (though it does happen), it’s that research articles are complicated products, and the odds of any individual reviewer having the expertise, motivation, and attention span to catch every major methodological concern in a paper are exceedingly small. Since only two or three people typically review a paper pre-publication, it’s not surprising that in many cases, whether or not a paper makes it through the review process depends as much on who happened to review it as on the paper itself.

A nice example of this is the Bem paper on ESP I discussed here a few weeks ago. I think most people would agree that things like data peeking, lumping and splitting studies, and post-hoc hypothesis testing–all of which are apparent in Bem’s paper–are generally not good research practices. And no doubt many potential reviewers would have noted these and other problems with Bem’s paper had they been asked to reviewer. But as it happens, the actual reviewers didn’t note those problems (or at least, not enough of them), so the paper was accepted for publication.

I’m not saying this to criticize Bem’s reviewers, who I’m sure all had a million other things to do besides pore over the minutiae of a paper on ESP (and for all we know, they could have already caught many other problems with the paper that were subsequently addressed before publication). The problem is a much more general one: the pre-publication peer review process in psychology, and many other areas of science, is pretty inefficient and unreliable, in the sense that it draws on the intense efforts of a very few, semi-randomly selected, individuals, as opposed to relying on a much broader evaluation by the community of researchers at large.

In the long term, the best solution to this problem may be to fundamentally rethink the way we evaluate scientific papers–e.g., by designing new platforms for post-publication review of papers (e.g., see this post for more on efforts towards that end). I think that’s far and away the most important thing the scientific community could do to improve the quality of scientific assessment, and I hope we ultimately will collectively move towards alternative models of review that look a lot more like the collaborative filtering systems found on, say, reddit or Stack Overflow than like peer review as we now know it. But that’s a process that’s likely to take a long time, and I don’t profess to have much of an idea as to how one would go about kickstarting it.

What I want to focus on here is something much less ambitious, but potentially still useful–namely, the possibility of automating the assessment of at least some aspects of research methodology. As I alluded to above, many of the factors that help us determine how believable a particular scientific finding is are readily quantifiable. In fact, in many cases, they’re already quantified for us. Sample sizes, p values, effect sizes,  coefficient alphas… all of these things are, in one sense or another, indices of the quality of a paper (however indirect), and are easy to capture and code. And many other things we care about can be captured with only slightly more work. For instance, if we want to know whether the authors of a paper corrected for multiple comparisons, we could search for strings like “multiple comparisons”, “uncorrected”, “Bonferroni”, and “FDR”, and probably come away with a pretty decent idea of what the authors did or didn’t do to correct for multiple comparisons. It might require a small dose of technical wizardry to do this kind of thing in a sensible and reasonably accurate way, but it’s clearly feasible–at least for some types of variables.

Once we extracted a bunch of data about the distribution of p values and sample sizes from many different papers, we could then start to do some interesting (and potentially useful) things, like generating automated metrics of research quality. For instance:

  • In multi-study articles, the variance in sample size across studies could tell us something useful about the likelihood that data peeking is going on (for an explanation as to why, see this). Other things being equal, an article with 9 studies with identical sample sizes is less likely to be capitalizing on chance than one containing 9 studies that range in sample size between 50 and 200 subjects (as the Bem paper does), so high variance in sample size could be used as a rough index for proclivity to peek at the data.
  • Quantifying the distribution of p values found in an individual article or an author’s entire body of work might be a reasonable first-pass measure of the amount of fudging (usually inadvertent) going on. As I pointed out in my earlier post, it’s interesting to note that with only one or two exceptions, virtually all of Bem’s statistically significant results come very close to p = .05. That’s not what you expect to see when hypothesis testing is done in a really principled way, because it’s exceedingly unlikely to think a researcher would be so lucky as to always just barely obtain the expected result. But a bunch of p = .03 and p = .048 results are exactly what you expect to find when researchers test multiple hypotheses and report only the ones that produce significant results.
  • The presence or absence of certain terms or phrases is probably at least slightly predictive of the rigorousness of the article as a whole. For instance, the frequent use of phrases like “cross-validated”, “statistical power”, “corrected for multiple comparisons”, and “unbiased” is probably a good sign (though not necessarily a strong one); conversely, terms like “exploratory”, “marginal”, and “small sample” might provide at least some indication that the reported findings are, well, exploratory.

These are just the first examples that come to mind; you can probably think of other better ones. Of course, these would all be pretty weak indicators of paper (or researcher) quality, and none of them are in any sense unambiguous measures. There are all sorts of situations in which such numbers wouldn’t mean much of anything. For instance, high variance in sample sizes would be perfectly justifiable in a case where researchers were testing for effects expected to have very different sizes, or conducting different kinds of statistical tests (e.g., detecting interactions is much harder than detecting main effects, and so necessitates larger samples). Similarly, p values close to .05 aren’t necessarily a marker of data snooping and fishing expeditions; it’s conceivable that some researchers might be so good at what they do that they can consistently design experiments that just barely manage to show what they’re intended to (though it’s not very plausible). And a failure to use terms like “corrected”, “power”, and “cross-validated” in a paper doesn’t necessarily mean the authors failed to consider important methodological issues, since such issues aren’t necessarily relevant to every single paper. So there’s no question that you’d want to take these kinds of metrics with a giant lump of salt.

Still, there are several good reasons to think that even relatively flawed automated quality metrics could serve an important purpose. First, many of the problems could be overcome to some extent through aggregation. You might not want to conclude that a particular study was poorly done simply because most of the reported p values were very close to .05; but if you were look at a researcher’s entire body of, say, thirty or forty published articles, and noticed the same trend relative to other researchers, you might start to wonder. Similarly, we could think about composite metrics that combine many different first-order metrics to generate a summary estimate of a paper’s quality that may not be so susceptible to contextual factors or noise. For instance, in the case of the Bem ESP article, a measure that took into account the variance in sample size across studies, the closeness of the reported p values to .05, the mention of terms like ‘one-tailed test’, and so on, would likely not have assigned Bem’s article a glowing score, even if each individual component of the measure was not very reliable.

Second, I’m not suggesting that crude automated metrics would replace current evaluation practices; rather, they’d be used strictly as a complement. Essentially, you’d have some additional numbers to look at, and you could choose to use them or not, as you saw fit, when evaluating a paper. If nothing else, they could help flag potential issues that reviewers might not be spontaneously attuned to. For instance, a report might note the fact that the term “interaction” was used several times in a paper in the absence of “main effect,” which might then cue a reviewer to ask, hey, why you no report main effects? — but only if they deemed it a relevant concern after looking at the issue more closely.

Third, automated metrics could be continually updated and improved using machine learning techniques. Given some criterion measure of research quality, one could systematically train and refine an algorithm capable of doing a decent job recapturing that criterion. Of course, it’s not clear that we really have any unobjectionable standard to use as a criterion in this kind of training exercise (which only underscores why it’s important to come up with better ways to evaluate scientific research). But a reasonable starting point might be to try to predict replication likelihood for a small set of well-studied effects based on the features of the original report. Could you for instance show, in an automated way, that initial effects reported in studies that failed to correct for multiple comparisons or reported p values closer to .05 were less likely to be subsequently replicated?

Of course, as always with this kind of stuff, the rub is that it’s easy to talk the talk and not so easy to walk the walk. In principle, we can make up all sorts of clever metrics, but in practice, it’s not trivial to automatically extract even a piece of information as seemingly simple as sample size from many papers (consider the difference between “Undergraduates (N = 15) participated…” and “Forty-two individuals diagnosed with depression and an equal number of healthy controls took part…”), let alone build sophisticated composite measures that could reasonably well approximate human judgments. It’s all well and good to write long blog posts about how fancy automated metrics could help separate good research from bad, but I’m pretty sure I don’t want to actually do any work to develop them, and you probably don’t either. Still, the potential benefits are clear, and it’s not like this is science fiction–it’s clearly viable on at least a modest scale. So someone should do it… Maybe Elsevier? Jorge Hirsch? Anyone? Bueller? Bueller?

The psychology of parapsychology, or why good researchers publishing good articles in good journals can still get it totally wrong

Unless you’ve been pleasantly napping under a rock for the last couple of months, there’s a good chance you’ve heard about a forthcoming article in the Journal of Personality and Social Psychology (JPSP) purporting to provide strong evidence for the existence of some ESP-like phenomenon. (If you’ve been napping, see here, here, here, here, here, or this comprehensive list). In the article–appropriately titled Feeling the FutureDaryl Bem reports the results of 9 (yes, 9!) separate experiments that catch ordinary college students doing things they’re not supposed to be able to do–things like detecting the on-screen location of erotic images that haven’t actually been presented yet, or being primed by stimuli that won’t be displayed until after a response has already been made.

As you might expect, Bem’s article’s causing quite a stir in the scientific community. The controversy isn’t over whether or not ESP exists, mind you; scientists haven’t lost their collective senses, and most of us still take it as self-evident that college students just can’t peer into the future and determine where as-yet-unrevealed porn is going to soon be hidden (as handy as that ability might be). The real question on many people’s minds is: what went wrong? If there’s obviously no such thing as ESP, how could a leading social psychologist publish an article containing a seemingly huge amount of evidence in favor of ESP in the leading social psychology journal, after being peer reviewed by four other psychologists? Or, to put it in more colloquial terms–what the fuck?

What the fuck?

Many critiques of Bem’s article have tried to dismiss it by searching for the smoking gun–the single critical methodological flaw that dooms the paper. For instance, one critique that’s been making the rounds, by Wagenmakers et al, argues that Bem should have done a Bayesian analysis, and that his failure to adjust his findings for the infitesimally low prior probability of ESP (essentially, the strength of subjective belief against ESP) means that the evidence for ESP is vastly overestimated. I think these types of argument have a kernel of truth, but also suffer from some problems (for the record, I don’t really agree with the Wagenmaker critique, for reasons Andrew Gelman has articulated here). Having read the paper pretty closely twice, I really don’t think there’s any single overwhelming flaw in Bem’s paper (actually, in many ways, it’s a nice paper). Instead, there are a lot of little problems that collectively add up to produce a conclusion you just can’t really trust. Below is a decidedly non-exhaustive list of some of these problems. I’ll warn you now that, unless you care about methodological minutiae, you’ll probably find this very boring reading. But that’s kind of the point: attending to this stuff is so boring that we tend not to do it, with potentially serious consequences. Anyway:

  • Bem reports 9 different studies, which sounds (and is!) impressive. But a noteworthy feature these studies is that they have grossly uneven sample sizes, ranging all the way from N = 50 to N = 200, in blocks of 50. As far as I can tell, no justification for these differences is provided anywhere in the article, which raises red flags, because the most common explanation for differing sample sizes–especially on this order of magnitude–is data peeking. That is, what often happens is that researchers periodically peek at their data, and halt data collection as soon as they obtain a statistically significant result. This may seem like a harmless little foible, but as I’ve discussed elsewhere, is actually a very bad thing, as it can substantially inflate Type I error rates (i.e., false positives).To his credit, Bem was at least being systematic about his data peeking, since his sample sizes always increase in increments of 50. But even in steps of 50, false positives can be grossly inflated. For instance, for a one-sample t-test, a researcher who peeks at her data in increments of 50 subjects and terminates data collection when a significant result is obtained (or N = 200, if no such result is obtained) can expect an actual Type I error rate of about 13%–nearly 3 times the nominal rate of 5%!
  • There’s some reason to think that the 9 experiments Bem reports weren’t necessarily designed as such. Meaning that they appear to have been ‘lumped’ or ‘splitted’ post hoc based on the results. For instance, Experiment 2 had 150 subjects, but the experimental design for the first 100 differed from the final 50 in several respects. They were minor respects, to be sure (e.g., pictures were presented randomly in one study, but in a fixed sequence in the other), but were still comparable in scope to those that differentiated Experiment 8 from Experiment 9 (which had the same sample size splits of 100 and 50, but were presented as two separate experiments). There’s no obvious reason why a researcher would plan to run 150 subjects up front, then decide to change the design after 100 subjects, and still call it the same study. A more plausible explanation is that Experiment 2 was actually supposed to be two separate experiments (a successful first experiment with N = 100 followed by an intended replication with N = 50) that was collapsed into one large study when the second experiment failed–preserving the statistically significant result in the full sample. Needless to say, this kind of lumping and splitting is liable to additionally inflate the false positive rate.
  • Most of Bem’s experiments allow for multiple plausible hypotheses, and it’s rarely clear why Bem would have chosen, up front, the hypotheses he presents in the paper. For instance, in Experiment 1, Bem finds that college students are able to predict the future location of erotic images that haven’t yet been presented (essentially a form of precognition), yet show no ability to predict the location of negative, positive, or romantic pictures. Bem’s explanation for this selective result is that “… such anticipation would be evolutionarily advantageous for reproduction and survival if the organism could act instrumentally to approach erotic stimuli …”. But this seems kind of silly on several levels. For one thing, it’s really hard to imagine that there’s an adaptive benefit to keeping an eye out for potential mates, but not for other potential positive signals (represented by non-erotic positive images). For another, it’s not like we’re talking about actual people or events here; we’re talking about digital images on an LCD. What Bem is effectively saying is that, somehow, someway, our ancestors evolved the extrasensory capacity to read digital bits from the future–but only pornographic ones. Not very compelling, and one could easily have come up with a similar explanation in the event that any of the other picture categories had selectively produced statistically significant results. Of course, if you get to test 4 or 5 different categories at p < .05, and pretend that you called it ahead of time, your false positive rate isn’t really 5%–it’s closer to 20%.
  • I say p < .05, but really, it’s more like p < .1, because the vast majority of tests Bem reports use one-tailed tests–effectively instantaneously doubling the false positive rate. There’s a long-standing debate in the literature, going back at least 60 years, as to whether it’s ever appropriate to use one-tailed tests, but even proponents of one-tailed tests will concede that you should only use them if you really truly have a directional hypothesis in mind before you look at your data. That seems exceedingly unlikely in this case, at least for many of the hypotheses Bem reports testing.
  • Nearly all of Bem’s statistically significant p values are very close to the critical threshold of .05. That’s usually a marker of selection bias, particularly given the aforementioned unevenness of sample sizes. When experiments are conducted in a principled way (i.e., with minimal selection bias or peeking), researchers will often get very low p values, since it’s very difficult to know up front exactly how large effect sizes will be. But in Bem’s 9 experiments, he almost invariably collects just enough subjects to detect a statistically significant effect. There are really only two explanations for that: either Bem is (consciously or unconsciously) deciding what his hypotheses are based on which results attain significance (which is not good), or he’s actually a master of ESP himself, and is able to peer into the future and identify the critical sample size he’ll need in each experiment (which is great, but unlikely).
  • Some of the correlational effects Bem reports–e.g., that people with high stimulus seeking scores are better at ESP–appear to be based on measures constructed post hoc. For instance, Bem uses a non-standard, two-item measure of boredom susceptibility, with no real justification provided for this unusual item selection, and no reporting of results for the presumably many other items and questionnaires that were administered alongside these items (except to parenthetically note that some measures produced non-significant results and hence weren’t reported). Again, the ability to select from among different questionnaires–and to construct custom questionnaires from different combinations of items–can easily inflate Type I error.
  • It’s not entirely clear how many studies Bem ran. In the Discussion section, he notes that he could “identify three sets of findings omitted from this report so far that should be mentioned lest they continue to languish in the file drawer”, but it’s not clear from the description that follows exactly how many studies these “three sets of findings” comprised (or how many ‘pilot’ experiments were involved). What we’d really like to know is the exact number of (a) experiments and (b) subjects Bem ran, without qualification, and including all putative pilot sessions.

It’s important to note that none of these concerns is really terrible individually. Sure, it’s bad to peek at your data, but data peeking alone probably isn’t going to produce 9 different false positives. Nor is using one-tailed tests, or constructing measures on the fly, etc. But when you combine data peeking, liberal thresholds, study recombination, flexible hypotheses, and selective measures, you have a perfect recipe for spurious results. And the fact that there are 9 different studies isn’t any guard against false positives when fudging is at work; if anything, it may make it easier to produce a seemingly consistent story, because reviewers and readers have a natural tendency to relax the standards for each individual experiment. So when Bem argues that “…across all nine experiments, Stouffer’s z = 6.66, p = 1.34 × 10-11,” that statement that the cumulative p value is 1.34 x 10-11 is close to meaningless. Combining p values that way would only be appropriate under the assumption that Bem conducted exactly 9 tests, and without any influence of selection bias. But that’s clearly not the case here.

What would it take to make the results more convincing?

Admittedly, there are quite a few assumptions involved in the above analysis. I don’t know for a fact that Bem was peeking at his data; that just seems like a reasonable assumption given that no justification was provided anywhere for the use of uneven samples. It’s conceivable that Bem had perfectly good, totally principled, reasons for conducting the experiments exactly has he did. But if that’s the case, defusing these criticisms should be simple enough. All it would take for Bem to make me (and presumably many other people) feel much more comfortable with the results is an affirmation of the following statements:

  • That the sample sizes of the different experiments were determined a priori, and not based on data snooping;
  • That the distinction between pilot studies and ‘real’ studies was clearly defined up front–i.e., there weren’t any studies that started out as pilots but eventually ended up in the paper, or studies that were supposed to end up in the paper but that were disqualified as pilots based on the (lack of) results;
  • That there was a clear one-to-one mapping between intended studies and reported studies; i.e., Bem didn’t ‘lump’ together two different studies in cases where one produced no effect, or split one study into two in cases where different subsets of the data both showed an effect;
  • That the predictions reported in the paper were truly made a priori, and not on the basis of the results (e.g., that the hypothesis that sexually arousing stimuli would be the only ones to show an effect was actually written down in one of Bem’s notebooks somewhere);
  • That the various transformations applied to the RT and memory performance measures in some Experiments weren’t selected only after inspecting the raw, untransformed values and failing to identify significant results;
  • That the individual differences measures reported in the paper were selected a priori and not based on post-hoc inspection of the full pattern of correlations across studies;
  • That Bem didn’t run dozens of other statistical tests that failed to produce statistically non-significant results and hence weren’t reported in the paper.

Endorsing this list of statements (or perhaps a somewhat more complete version, as there are other concerns I didn’t mention here) would be sufficient to cast Bem’s results in an entirely new light, and I’d go so far as to say that I’d even be willing to suspend judgment on his conclusions pending additional data (which would be a big deal for me, since I don’t have a shred of a belief in ESP). But I confess that I’m not holding my breath, if only because I imagine that Bem would have already addressed these concerns in his paper if there were indeed principled justifications for the design choices in question.

It isn’t a bad paper

If you’ve read this far (why??), this might seem like a pretty damning review, and you might be thinking, boy, this is really a terrible paper. But I don’t think that’s true at all. In many ways, I think Bem’s actually been relatively careful. The thing to remember is that this type of fudging isn’t unusual; to the contrary, it’s rampant–everyone does it. And that’s because it’s very difficult, and often outright impossible, to avoid. The reality is that scientists are human, and like all humans, have a deep-seated tendency to work to confirm what they already believe. In Bem’s case, there are all sorts of reasons why someone who’s been working for the better part of a decade to demonstrate the existence of psychic phenomena isn’t necessarily the most objective judge of the relevant evidence. I don’t say that to impugn Bem’s motives in any way; I think the same is true of virtually all scientists–including myself. I’m pretty sure that if someone went over my own work with a fine-toothed comb, as I’ve gone over Bem’s above, they’d identify similar problems. Put differently, I don’t doubt that, despite my best efforts, I’ve reported some findings that aren’t true, because I wasn’t as careful as a completely disinterested observer would have been. That’s not to condone fudging, of course, but simply to recognize that it’s an inevitable reality in science, and it isn’t fair to hold Bem to a higher standard than we’d hold anyone else.

If you set aside the controversial nature of Bem’s research, and evaluate the quality of his paper purely on methodological grounds, I don’t think it’s any worse than the average paper published in JPSP, and actually probably better. For all of the concerns I raised above, there are many things Bem is careful to do that many other researchers don’t. For instance, he clearly makes at least a partial effort to avoid data peeking by collecting samples in increments of 50 subjects (I suspect he simply underestimated the degree to which Type I error rates can be inflated by peeking, even with steps that large); he corrects for multiple comparisons in many places (though not in some places where it matters); and he devotes an entire section of the discussion to considering the possibility that he might be inadvertently capitalizing on chance by falling prey to certain biases. Most studies–including most of those published in JPSP, the premier social psychology journal–don’t do any of these things, even though the underlying problems are just applicable. So while you can confidently conclude that Bem’s article is wrong, I don’t think it’s fair to say that it’s a bad article–at least, not by the standards that currently hold in much of psychology.

Should the study have been published?

Interestingly, much of the scientific debate surrounding Bem’s article has actually had very little to do with the veracity of the reported findings, because the vast majority of scientists take it for granted that ESP is bunk. Much of the debate centers instead over whether the article should have ever been published in a journal as prestigious as JPSP (or any other peer-reviewed journal, for that matter). For the most part, I think the answer is yes. I don’t think it’s the place of editors and reviewers to reject a paper based solely on the desirability of its conclusions; if we take the scientific method–and the process of peer review–seriously, that commits us to occasionally (or even frequently) publishing work that we believe time will eventually prove wrong. The metrics I think reviewers should (and do) use are whether (a) the paper is as good as most of the papers that get published in the journal in question, and (b) the methods used live up to the standards of the field. I think that’s true in this case, so I don’t fault the editorial decision. Of course, it sucks to see something published that’s virtually certain to be false… but that’s the price we pay for doing science. As long as they play by the rules, we have to engage with even patently ridiculous views, because sometimes (though very rarely) it later turns out that those views weren’t so ridiculous after all.

That said, believing that it’s appropriate to publish Bem’s article given current publishing standards doesn’t preclude us from questioning those standards themselves. On a pretty basic level, the idea that Bem’s article might be par for the course, quality-wise, yet still be completely and utterly wrong, should surely raise some uncomfortable questions about whether psychology journals are getting the balance between scientific novelty and methodological rigor right. I think that’s a complicated issue, and I’m not going to try to tackle it here, though I will say that personally I do think that more stringent standards would be a good thing for psychology, on the whole. (It’s worth pointing out that the problem of (arguably) lax standards is hardly unique to psychology; as John Ionannidis has famously pointed out, most published findings in the biomedical sciences are false.)

Conclusion

The controversy surrounding the Bem paper is fascinating for many reasons, but it’s arguably most instructive in underscoring the central tension in scientific publishing between rapid discovery and innovation on the one hand, and methodological rigor and cautiousness on the other. Both values are important, but it’s important to recognize the tradeoff that pursuing either one implies. Many of the people who are now complaining that JPSP should never have published Bem’s article seem to overlook the fact that they’ve probably benefited themselves from the prevalence of the same relaxed standards (note that by ‘relaxed’ I don’t mean to suggest that journals like JPSP are non-selective about what they publish, just that methodological rigor is only one among many selection criteria–and often not the most important one). Conversely, maintaining editorial standards that would have precluded Bem’s article from being published would almost certainly also make it much more difficult to publish most other, much less controversial, findings. A world in which fewer spurious results are published is a world in which fewer studies are published, period. You can reasonably debate whether that would be a good or bad thing, but you can’t have it both ways. It’s wishful thinking to imagine that reviewers could somehow grow a magic truth-o-meter that applies lax standards to veridical findings and stringent ones to false positives.

From a bird’s eye view, there’s something undeniably strange about the idea that a well-respected, relatively careful researcher could publish an above-average article in a top psychology journal, yet have virtually everyone instantly recognize that the reported findings are totally, irredeemably false. You could read that as a sign that something’s gone horribly wrong somewhere in the machine; that the reviewers and editors of academic journals have fallen down and can’t get up, or that there’s something deeply flawed about the way scientists–or at least psychologists–practice their trade. But I think that’s wrong. I think we can look at it much more optimistically. We can actually see it as a testament to the success and self-corrective nature of the scientific enterprise that we actually allow articles that virtually nobody agrees with to get published. And that’s because, as scientists, we take seriously the possibility, however vanishingly small, that we might be wrong about even our strongest beliefs. Most of us don’t really believe that Cornell undergraduates have a sixth sense for future porn… but if they did, wouldn’t you want to know about it?

ResearchBlogging.org
Bem, D. J. (2011). Feeling the Future: Experimental Evidence for Anomalous Retroactive Influences on Cognition and Affect Journal of Personality and Social Psychology

does functional specialization exist in the language system?

One of the central questions in cognitive neuroscience–according to some people, at least–is how selective different chunks of cortex are for specific cognitive functions. The paradigmatic examples of functional selectivity are pretty much all located in sensory cortical regions or adjacent association cortices. For instance, the fusiform face area (FFA), is so named because it (allegedly) responds selectively to faces but not to other stimuli. Other regions with varying selectivity profiles are similarly named: the visual word form area (VWFA), parahippocampal place area (PPA), extrastriate body area (EBA), and so on.

In a recent review paper, Fedorenko and Kanwisher (2009) sought to apply insights from the study of functionally selective visual regions to the study of language. They posed the following question with respect to the neuroimaging of language in the title of their paper: Why hasn’t a clearer picture emerged? And they gave the following answer: it’s because brains differ from one another, stupid.

Admittedly, I’m paraphrasing; they don’t use exactly those words. But the basic point they make is that it’s difficult to identify functionally selective regions when you’re averaging over a bunch of very different brains. And the solution they propose–again, imported from the study of visual areas–is to identify potentially selective language regions-of-interest (ROIs) on a subject-specific basis rather than relying on group-level analyses.

The Fedorenko and Kanwisher paper apparently didn’t please Greg Hickok of Talking Brains, who’s done a lot of very elegant work on the neurobiology of language.  A summary of Hickok’s take:

What I found a bit on the irritating side though was the extremely dim and distressingly myopic view of progress in the field of the neural basis of language.

He objects to Fedorenko and Kanwisher on several grounds, and the post is well worth reading. But since I’m very lazy tired, I’ll just summarize his points as follows:

  • There’s more functional specialization in the language system than F&K give the field credit for
  • The use of subject-specific analyses in the domain of language isn’t new, and many researchers (including Hickok) have used procedures similar to those F&K recommend in the past
  • Functional selectivity is not necessarily a criterion we should care about all that much anyway

As you might expect, F&K disagree with Hickok on these points, and Hickok was kind enough to post their response. He then responded to their response in the comments (which are also worth reading), which in turn spawned a back-and-forth with F&K, a cameo by Brad Buchsbaum (who posted his own excellent thoughts on the matter here), and eventually, an intervention by a team of professional arbitrators. Okay, I made that last bit up; it was a very civil disagreement, and is exactly what scientific debates on the internet should look like, in my opinion.

Anyway, rather than revisit the entire thread, which you can read for yourself, I’ll just summarize my thoughts:

  • On the whole, I think my view lines up pretty closely with Hickok’s and Buchsbaum’s. Although I’m very far from an expert on the neurobiology of language (is there a word in English for someone’s who’s the diametric opposite of an expert–i.e., someone who consistently and confidently asserts exactly the wrong thing? Cause that’s what I am), I agree with Hickok’s argument that the temporal poles show a response profile that looks suspiciously like sentence- or narrative-specific processing (I have a paper on the neural mechanisms of narrative comprehension that supports that claim to some extent), and think F&K’s review of the literature is probably not as balanced as it could have been.
  • More generally, I agree with Hickok that demonstrating functional specialization isn’t necessarily that important to the study of language (or most other domains). This seems to be a major point of contention for F&K, but I don’t think they make a very strong case for their view. They suggest that they “are not sure what other goals (besides understanding a region’s computations) could drive studies aimed at understanding how functionally specialized a region is,” which I think is reasonable, but affirms the consequent. Hickok isn’t saying there’s no reason to search for functional specialization in the F&K sense; as I read him, he’s simply saying that you can study the nature of neural computation in lots of interesting ways that don’t require you to demonstrate functional specialization to the degree F&K seem to require. Seems hard to disagree with that.
  • Buchsbaum points out that it’s questionable whether there are any brain regions that meet the criteria F&K set out for functional specialization–namely that “A brain region R is specialized for cognitive function x if this region (i) is engaged in tasks that rely on cognitive function x, and (ii) is not engaged in tasks that do not rely on cognitive function x.Buchsbaum and Hickok both point out that the two examples F&K give of putatively specialized regions (the FFA and the temporo-parietal junction, which some people believe is selectively involved in theory of mind) are hardly uncontroversial. Plenty of people have argued that the FFA isn’t really selective to faces, and even more people have argued that the TPJ isn’t selective to theory of mind. As far as I can tell, F&K don’t really address this issue in the comments. They do refer to a recent paper of Kanwisher’s that discusses the evidence for functional specificity in the FFA, but I’m not sure the argument made in that paper is itself uncontroversial, and in any case, Kanwisher does concede that there’s good evidence for at least some representation of non-preferred stimuli (i.e., non-faces in the FFA). In any case, the central question here is whether or not F&K really unequivocally believe that FFA and TPJ aren’t engaged by any tasks that don’t involve face or theory of mind processing. If not, then it’s unfair to demand or expect the same of regions implicated in language.
  • Although I think there’s a good deal to be said for subject-specific analyses, I’m not as sanguine as F&K that a subject-specific approach offers a remedy to the problems that they perceive afflict the study of the neural mechanisms of language. While there’s no denying that group analyses suffer from a number of limitations, subject-specific analyses have their own weaknesses, which F&K don’t really mention in their paper. One is that such analyses typically require the assumption that two clusters located in slightly different places for different subjects must be carrying out the same cognitive operations if they respond similarly to a localizer task. That’s a very strong assumption for which there’s very little evidence (at least in the language domain)–especially because the localizer task F&K promote in this paper involves a rather strong manipulation that may confound several different aspects of language processing.
    Another problem is that it’s not at all obvious how you determine which regions are the “same” (in their 2010 paper, F&K argue for an algorithmic parcellation approach, but the fact that you get sensible-looking results is no guarantee that your parcellation actually reflects meaningful functional divisions in individual subjects). And yet another is that serious statistical problems can arise in cases where one or more subjects fail to show activation in a putative region (which is generally the norm rather than the exception). Say you have 25 subjects in your sample, and 7 don’t show activation anywhere in a region that can broadly be called Broca’s area. What do you do? You can’t just throw those subjects out of the analysis, because that would grossly and misleadingly inflate your effect sizes. Conversely, you can’t just identify any old region that does activate and lump it in with the regions identified in all the other subjects. This is a very serious problem, but it’s one that group analyses, for all their weaknesses, don’t have to contend with.

Disagreements aside, I think it’s really great to see serious scientific discussion taking place in this type of forum. In principle, this is the kind of debate that should be resolved (or not) in the peer-reviewed literature; in practice, peer review is slow, writing full-blown articles takes time, and journal space is limited. So I think blogs have a really important role to play in scientific communication, and frankly, I envy Hickok and Poeppel for the excellent discussion they consistently manage to stimulate over at Talking Brains!

estimating bias in text with Ruby

Over the past couple of months, I’ve been working on and off on a collaboration with my good friend Nick Holtzman and some other folks that focuses on ways to automatically extract bias from text using a vector space model. The paper is still in progress, so I won’t give much away here, except to say that Nick’s figured out what I think is a pretty clever way to show that, yes, Fox likes Republicans more than Democrats, and MSNBC likes Democrats more than Republicans. It’s not meant to be a surprising result, but simply a nice validation of the underlying method, which can be flexibly applied to all sorts of interesting questions.

The model we’re using is a simplified variant of Jones and Mewhort’s (2007) BEAGLE model. Essentially, similarity between words is quantified by looking at the degree to which words have similar co-occurrence patterns with other words. This basic idea is actually common to pretty much all vector space models, so in that sense, there’s not much new here (there’s plenty that’s new in Jones and Mewhort (2007), but we’re mostly leaving those features out for the sake of simplicity and computational speed). The novel aspect is the contrast coding of similarity terms in order to produce bias estimates. But you’ll have to wait for the paper to read more about that.

In the meantime, one thing we’ve tried to do is develop software that can be used to easily implement the kind of analyses we describe in the paper. With plenty of input from Nick and Mike Jones, I’ve written a set of tools in Ruby that’s now freely available for download here. The tools are actually bundled as a Ruby gem, so installation should be a snap on most platforms. We’re still working on documentation, so there’s no full-blown manual yet, but the quick-start guide should be sufficient to get many users up and running. And for people who share my love of Ruby and are interested in using the tools programmatically, there’s a fairly well-commented RDoc.

The code should really be considered an alpha release at the moment; I’m sure there are plenty of bugs (if you find any, email me!), and the feature set is currently pretty limited. Hopefully it’ll grow over time. I also plan to throw the code up on GitHub at some point in the near future so that anyone who’s interested can help out with the development. In the meantime, if you’re interested in semantic space models and want to play around with a crude (but relatively fast) implementation of one, there’s a (very) small chance you might find these tools useful.