Tag Archives: art

some people are irritable, but everyone likes to visit museums: what personality inventories tell us about how we’re all just like one another

I’ve recently started recruiting participants for online experiments via Mechanical Turk. In the past I’ve always either relied on on directory listings (like this one) or targeted specific populations (e.g., bloggers and twitterers) via email solicitation. But recently I’ve started running a very large-sample decision-making study (it’s here, if you care to contribute to the sample), and waiting for participants to trickle in via directories isn’t cutting it. So I’ve started paying people (very) small amounts of money for participation.

One challenge I’ve had to deal with is figuring out how to filter out participants who aren’t really interested in contributing to science, and are strictly in it for the money. 20 or 30 cents is a pittance to most people in the developed world, but as I’ve found out the hard way, gaming MTurk appears to be a thriving business in some developing countries (some of which I’ve unfortunately had to resort to banning entirely). Cheaters aren’t so much of an issue for very quick tasks like providing individual ratings of faces, because (a) the time it takes to give a fake rating isn’t substantially greater than giving one’s actual opinion, and (b) the standards for what counts as accurate performance are clear, so it’s easy to train workers and weed out the bad apples. Unfortunately, my studies generally involve fairly long personality questionnaires combined with other cognitive tasks (e.g., in the current study, you get to repeatedly allocate hypothetical money between yourself and a computer partner, and rate some faces). They often take around half an hour, and involve 20+ questions per screen, so there’s a pretty big incentive for workers who are only in it for the cash to produce random responses and try to increase their effective wage. And the obvious question then is how to detect cheating in the data.

One of the techniques I’ve found works surprisingly well is to simply compare each person’s pattern of responses across items with the mean for the entire sample. In other words, you just compute the correlation between each individual’s item scores and the means for all the items scores across everyone who’s filled out the same measure. I know that there’s an entire literature on this stuff full of much more sophisticated ways to detect random responding, but I find this crude approach really does quite well (I’ve verified this by comparing it with a bunch of other similar metrics), and has the benefit of being trivial to implement.

Anyway, one of the things that surprised me when I first computed these correlations is just how strong the relationship between the sample mean and most individuals’ responses is. Here’s what the distribution looks like for one particular inventory, the 181-item Analog to Multiple Broadband Inventories (AMBI, whichI introduced in this paper, and discuss further here):

This is based on a sample of about 600 internet respondents, which actually turns out to be pretty representative of the broader population, as Sam Gosling, Simine Vazire, and Sanjay Srivastava will tell you (for what it’s worth, I’ve done the exact same analysis on a similar-sized off-line dataset from Lew Goldberg’s Eugene-Springfield Community Sample (check out that URL!) and obtained essentially the same results). In this sample, the median correlation is .48; so, in effect, you can predict a quarter of the variance in a typical participant’s responses without knowing anything at all about them. Human beings, it turns out, have some things in common with one another (who knew?). What you think you’re like is probably not very dissimilar to what I think I’m like. Which is kind of surprising, considering you’re a well-adjusted, friendly human being, and I’m a real freakshow somewhat eccentric, paranoid kind of guy.

What drives that similarity? Much of it probably has to do with social desirability–i.e., many of the AMBI items (and those on virtually all personality inventories) are evaluatively positive or negative statements that most people are inclined to strongly agree or disagree with. But it seems to be a particular kind of social desirability–one that has to do with openness to new experiences, and particular intellectual ones. For instance, here are the top 10 most endorsed items (based on mean likert scores across the entire sample; scores are in parentheses):

  1. like to read (4.62)
  2. like to visit new places (4.39)
  3. was a better than average student when I was in school (4.28)
  4. am a good listener (4.25)
  5. would love to explore strange places (4.22)
  6. am concerned about others (4.2)
  7. am open to new experiences (4.18)
  8. amuse my friends (4.16)
  9. love excitement (4.08)
  10. spend a lot of time reading (4.07)

And conversely, here are the 10 least-endorsed items:

  1. was a slow learner in school (1.52)
  2. don’t think that laws apply to me (1.8)
  3. do not like to visit museums (1.83)
  4. have difficulty imagining things (1.84)
  5. have no special urge to do something original (1.87)
  6. do not like art (1.95)
  7. feel little concern for others (1.97)
  8. don’t try to figure myself out (2.01)
  9. break my promises (2.01)
  10. make enemies (2.06)

You can see a clear evaluative component in both lists: almost everyone believes that they’re concerned about others and thinks that they’re smarter than average. But social desirability and positive illusions aren’t enough to explain these patterns, because there are plenty of other items on the AMBI that have an equally strong evaluative component–for instance, “don’t have much energy”, “cannot imagine lying or cheating”, “see myself as a good leader”, and “am easily annoyed”–yet have mean scores pretty close to the midpoint (in fact, the item ‘am easily annoyed’ is endorsed more highly than 107 of the 181 items!). So it isn’t just that we like to think and say nice things about ourselves; we’re willing to concede that we have some bad traits, but maybe not the ones that have to do with disliking cultural and intellectual experiences. I don’t have much of an idea as to why that might be, but it does introspectively feel to me like there’s more of a stigma about, say, not liking to visit new places or experience new things than admitting that you’re kind of an irritable person. Or maybe it’s just that many of the openness items can be interpreted more broadly than the other evaluative items–e.g., there are lots of different art forms, so almost everyone can endorse a generic “I like art” statement. I don’t really know.

Anyway, there’s nothing the least bit profound about any of this; if anything, it’s just a nice reminder that most of us are not really very good at evaluating where we stand in relation to other people, at least for many traits (for more on that, go read Simine Vazire’s work). The nominal midpoint on most personality scales is usually quite far from the actual median in the general population. This is a pretty big challenge for personality psychology, and if we could figure out how to get people to rank themselves more accurately relative to other people on self-report measures, that would be a pretty huge advance. But it seems quite likely that you just can’t do it, because people simply may not have introspective access to that kind of information.

Fortunately for our ability to measure individual differences in personality, there are plenty of items that do show considerable variance across individuals (actually, in fairness, even items with relatively low variance like the ones above can be highly discriminative if used properly–that’s what item response theory is for). Just for kicks, here are the 10 AMBI items with the largest standard deviations (in parentheses):

  1. disliked math in school (1.56)
  2. wanted to run away from home when I was a child (1.56)
  3. believe in a universal power or god (1.53)
  4. have felt contact with a divine power (1.51)
  5. rarely cry during sad movies (1.46)
  6. am able to fix electrical-wiring problems (1.46)
  7. am devoted to religion (1.44)
  8. shout or scream when I’m angry (1.43)
  9. love large parties (1.42)
  10. felt close to my parents when I was a child (1.42)

So now finally we come to the real moral of this post… that which you’ve read all this long way for. And the moral is this, grasshopper: if you want to successfully pick a fight at a large party, all you need to do is angrily yell at everyone that God told you math sucks.

elsewhere on the net

Some neat links from the past few weeks:

  • You Are No So Smart: A celebration of self-delusion. An excellent blog by journalist David McCraney that deconstructs common myths about the way the mind works.
  • NPR has a great story by Jon Hamilton about the famous saga of Einstein’s brain and what it’s helped teach us about brain function. [via Carl Zimmer]
  • The Neuroskeptic has a characteristically excellent 1,000 word explanation of how fMRI works.
  • David Rock has an interesting post on some recent work from Baumeister’s group purportedly showing that it’s good to believe in free will (whether or not it exists). My own feeling about this is that Baumeister’s not really studying people’s philosophical views about free will, but rather a construct closely related to self-efficacy and locus of control. But it’s certainly an interesting line of research.
  • The Prodigal Academic is a great new blog about all things academic. I’ve found it particularly interesting since several of the posts so far have been about job searches and job-seeking–something I’ll be experiencing my fill of over the next few months.
  • Prof-like Substance has a great 5-part series (1, 2, 3, 4, 5) on how blogging helps him as an academic. My own (much less eloquent) thoughts on that are here.
  • Cameron Neylon makes a nice case for the development of social webs for data mining.
  • Speaking of data mining, Michael Driscoll of Dataspora has an interesting pair of posts extolling the virtues of Big Data.
  • And just to balance things out, there’s this article in the New York Times by John Allen Paulos that offers some cautionary words about the challenges of using empirical data to support policy decisions.
  • On a totally science-less note, some nifty drawings (or is that photos?) by Ben Heine (via Crooked Brains):

more pretty pictures of brains

Google Reader‘s new recommendation engine is pretty nifty, and I find it gets it right most of the time. It just suggested this blog, which looks to be a nice (and growing) collection of neuro-related images. It’s an interesting set of pictures that go beyond the usual combination of brain slices and tractography images to include paintings of brains (and their owners) in strange poses, psychedelic posters, and abandoned Russian brain labs. For example:

In a similar vein, there’s also this, which seems to be the CNS-related incarnation of another earlier favorite.