Tag Archives: opinion

the New York Times blows it big time on brain imaging

The New York Times has a terrible, terrible Op-Ed piece today by Martin Lindstrom (who I’m not going to link to, because I don’t want to throw any more bones his way). If you believe Lindstrom, you don’t just like your iPhone a lot; you love it. Literally. And the reason you love it, shockingly, is your brain:

Earlier this year, I carried out an fMRI experiment to find out whether iPhones were really, truly addictive, no less so than alcohol, cocaine, shopping or video games. In conjunction with the San Diego-based firm MindSign Neuromarketing, I enlisted eight men and eight women between the ages of 18 and 25. Our 16 subjects were exposed separately to audio and to video of a ringing and vibrating iPhone.

But most striking of all was the flurry of activation in the insular cortex of the brain, which is associated with feelings of love and compassion. The subjects’ brains responded to the sound of their phones as they would respond to the presence or proximity of a girlfriend, boyfriend or family member.

In short, the subjects didn’t demonstrate the classic brain-based signs of addiction. Instead, they loved their iPhones.

There’s so much wrong with just these three short paragraphs (to say nothing of the rest of the article, which features plenty of other whoppers) that it’s hard to know where to begin. But let’s try. Take first the central premise–that an fMRI experiment could help determine whether iPhones are no less addictive than alcohol or cocaine. The tacit assumption here is that all the behavioral evidence you could muster–say, from people’s reports about how they use their iPhones, or clinicians’ observations about how iPhones affect their users–isn’t sufficient to make that determination; to “really, truly” know if something’s addictive, you need to look at what the brain is doing when people think about their iPhones. This idea is absurd inasmuch as addiction is defined on the basis of its behavioral consequences, not (right now, anyway) by the presence or absence of some biomarker. What makes someone an alcoholic is the fact that they’re dependent on alcohol, have trouble going without it, find that their alcohol use interferes with multiple aspects of their day-to-day life, and generally suffer functional impairment because of it–not the fact that their brain lights up when they look at pictures of Johnny Walker red. If someone couldn’t stop drinking–to the point where they lost their job, family, and friends–but their brain failed to display a putative biomarker for addiction, it would be strange indeed to say “well, you show all the signs, but I guess you’re not really addicted to alcohol after all.”

Now, there may come a day (and it will be a great one) when we have biomarkers sufficiently accurate that they can stand in for the much more tedious process of diagnosing someone’s addiction the conventional way. But that day is, to put it gently, a long way off. Right now, if you want to know if iPhones are addictive, the best way to do that is to, well, spend some time observing and interviewing iPhone users (and some quantitative analysis would be helpful).

Of course, it’s not clear what Lindstrom thinks an appropriate biomarker for addiction would be in any case. Presumably it would have something to do with the reward system; but what? Suppose Lindstrom had seen robust activation in the ventral striatum–a critical component of the brain’s reward system–when participants gazed upon the iPhone: what then? Would this have implied people are addicted to iPhones? But people also show striatal activity when gazing on food, money, beautiful faces, and any number of other stimuli. Does that mean the average person is addicted to all of the above? A marker of pleasure or reward, maybe (though even that’s not certain), but addiction? How could a single fMRI experiment with 16 subjects viewing pictures of iPhones confirm or disconfirm the presence of addiction? Lindstrom doesn’t say. I suppose he has good reason not to say: if he really did have access to an accurate fMRI-based biomarker for addiction, he’d be in a position to make millions (billions?) off the technology. To date, no one else has come close to identifying a clinically accurate fMRI biomarker for any kind of addiction (for more technical readers, I’m talking here about cross-validated methods that have both sensitivity and specificity comparable to traditional approaches when applied to new subjects–not individual studies that claim 90% with-sample classification accuracy based on simple regression models). So we should, to put it mildly, be very skeptical that Lindstrom’s study was ever in a position to do what he says it was designed to do.

We should also ask all sorts of salient and important questions about who the people are who are supposedly in love with their iPhones. Who’s the “You” in the “You Love Your iPhone” of the title? We don’t know, because we don’t know who the participants in Lindstrom’s sample, were, aside from the fact that they were eight men and eight women aged 18 to 25. But we’d like to know some other important things. For instance, were they selected for specific characteristics? Were they, say, already avid iPhone users? Did they report loving, or being addicted to their iPhones? If so, would it surprise us that people chosen for their close attachment to their iPhones also showed brain activity patterns typical of close attachment? (Which, incidentally, they actually don’t–but more on that below.) And if not, are we to believe that the average person pulled off the street–who probably has limited experience with iPhones–really responds to the sound of their phones “as they would respond to the presence or proximity of a girlfriend, boyfriend or family member”? Is the takeaway message of Lindstrom’s Op-Ed that iPhones are actually people, as far as our brains are concerned?

In fairness, space in the Times is limited, so maybe it’s not fair to demand this level of detail in the Op-Ed iteslf. But the bigger problem is that we have no way of evaluating Lindstrom’s claims, period, because (as far as I can tell), his study hasn’t been published or peer-reviewed anywhere. Presumably, it’s proprietary information that belongs to the neuromarketing firm in question. Which is to say, the NYT is basically giving Lindstrom license to talk freely about scientific-sounding findings that can’t actually be independently confirmed, disputed, or critiqued by members of the scientific community with expertise in the very methods Lindstrom is applying (expertise which, one might add, he himself lacks). For all we know, he could have made everything up. To be clear, I don’t really think he did make everything up–but surely, somewhere in the editorial process someone at the NYT should have stepped in and said, “hey, these are pretty strong scientific claims; is there any way we can make your results–on which your whole article hangs–available for other experts to examine?”

This brings us to what might be the biggest whopper of all, and the real driver of the article title: the claim that “most striking of all was the flurry of activation in the insular cortex of the brain, which is associated with feelings of love and compassion“. Russ Poldrack already tore this statement to shreds earlier this morning:

Insular cortex may well be associated with feelings of love and compassion, but this hardly proves that we are in love with our iPhones.  In Tal Yarkoni’s recent paper in Nature Methods, we found that the anterior insula was one of the most highly activated part of the brain, showing activation in nearly 1/3 of all imaging studies!  Further, the well-known studies of love by Helen Fisher and colleagues don’t even show activation in the insula related to love, but instead in classic reward system areas.  So far as I can tell, this particular reverse inference was simply fabricated from whole cloth.  I would have hoped that the NY Times would have learned its lesson from the last episode.

But you don’t have to take Russ’s word for it; if you surf for a few terms on our Neurosynth website, making sure to select “forward inference” under image type, you’ll notice that the insula shows up for almost everything. That’s not an accident; it’s because the insula (or at least the anterior part of the insula) plays a very broad role in goal-directed cognition. It really is activated when you’re doing almost anything that involves, say, following instructions an experimenter gave you, or attending to external stimuli, or mulling over something salient in the environment. You can see this pretty clearly in this modified figure from our Nature Methods paper (I’ve circled the right insula):

Proportion of studies reporting activation at each voxel

The insula is one of a few ‘hotspots’ where activation is reported very frequently in neuroimaging articles (the other major one being the dorsal medial frontal cortex). So, by definition, there can’t be all that much specificity to what the insula is doing, since it pops up so often. To put it differently, as Russ and others have repeatedly pointed out, the fact that a given region activates when people are in a particular psychological state (e.g., love) doesn’t give you license to conclude that that state is present just because you see activity in the region in question. If language, working memory, physical pain, anger, visual perception, motor sequencing, and memory retrieval all activate the insula, then knowing that the insula is active is of very little diagnostic value. That’s not to say that some psychological states might not be more strongly associated with insula activity (again, you can see this on Neurosynth if you switch the image type to ‘reverse inference’ and browse around); it’s just that, probabilistically speaking, the mere fact that the insula is active gives you very little basis for saying anything concrete about what people are experiencing.

In fact, to account for Lindstrom’s findings, you don’t have to appeal to love or addiction at all. There’s a much simpler way to explain why seeing or hearing an iPhone might elicit insula activation. For most people, the onset of visual or auditory stimulation is a salient event that causes redirection of attention to the stimulated channel. I’d be pretty surprised, actually, if you could present any picture or sound to participants in an fMRI scanner and not elicit robust insula activity. Orienting and sustaining attention to salient things seems to be a big part of what the anterior insula is doing (whether or not that’s ultimately its ‘core’ function). So the most appropriate conclusion to draw from the fact that viewing iPhone pictures produces increased insula activity is something vague like “people are paying more attention to iPhones”, or “iPhones are particularly salient and interesting objects to humans living in 2011.” Not something like “no, really, you love your iPhone!”

In sum, the NYT screwed up. Lindstrom appears to have a habit of making overblown claims about neuroimaging evidence, so it’s not surprising he would write this type of piece; but the NYT editorial staff is supposedly there to filter out precisely this kind of pseudoscientific advertorial. And they screwed up. It’s a particularly big screw-up given that (a) as of right now, Lindstrom’s Op-Ed is the single most emailed article on the NYT site, and (b) this incident almost perfectly recapitulates another NYT article 4 years ago in which some neuroscientists and neuromarketers wrote a grossly overblown Op-Ed claiming to be able to infer, in detail, people’s opinions about presidential candidates. That time, Russ Poldrack and a bunch of other big names in cognitive neuroscience wrote a concise rebuttal that appeared in the NYT (but unfortunately, isn’t linked to from the original Op-Ed, so anyone who stumbles across the original now has no way of knowing how ridiculous it is). One hopes the NYT follows up in similar fashion this time around. They certainly owe it to their readers–some of whom, if you believe Lindstrom, are now in danger of dumping their current partners for their iPhones.

h/t: Molly Crockett

how many Cortex publications in the hand is a Nature publication in the bush worth?

A provocative and very short Opinion piece by Julien Mayor (Are scientists nearsighted gamblers? The misleading nature of impact factors) was recently posted on the Frontiers in Psychology website (open access! yay!). Mayor’s argument is summed up nicely in this figure:

The left panel plots the mean versus median number of citations per article in a given year (each year is a separate point) for 3 journals: Nature (solid circles), Psych Review (squares), and Psych Science (triangles). The right panel plots the number of citations each paper receives in each of the first 15 years following its publication. What you can clearly see is that (a) the mean and median are very strongly related for the psychology journals, but completely unrelated for Nature, implying that a very small number of articles account for the vast majority of Nature citations (Mayor cites data indicating that up to 40% of Nature papers are never cited); and (b) Nature papers tend to get cited heavily for a year or two, and then disappear, whereas Psych Science, and particularly Psych Review, tend to have much longer shelf lives. Based on these trends, Mayor concludes that:

From this perspective, the IF, commonly accepted as golden standard for performance metrics seems to reward high-risk strategies (after all your Nature article has only slightly over 50% chance of being ever cited!), and short-lived outbursts. Are scientists then nearsighted gamblers?

I’d very much like to believe this, in that I think the massive emphasis scientists collectively place on publishing work in broad-interest, short-format journals like Nature and Science is often quite detrimental to the scientific enterprise as a whole. But I don’t actually believe it, because I think that, for any individual paper, researchers generally do have good incentives to try to publish in the glamor mags rather than in more specialized journals. Mayor’s figure, while informative, doesn’t take a number of factors into account:

  • The type of papers that gets published in Psych Review and Nature are very different. Review papers, in general, tend to get cited more often, and for a longer time. A better comparison would be between Psych Review papers and only review papers in Nature (there’s not many of them, unfortunately). My guess is that that difference alone probably explains much of the difference in citation rates later on in an article’s life. That would also explain why the temporal profile of Psych Science articles (which are also overwhelmingly short empirical reports) is similar to that of Nature. Major theoretical syntheses stay relevant for decades; individual empirical papers, no matter how exciting, tend to stop being cited as frequently once (a) the finding fails to replicate, or (b) a literature builds up around the original report, and researchers stop citing individual studies and start citing review articles (e.g., in Psych Review).
  • Scientists don’t just care about citation counts, they also care about reputation. The reality is that much of the appeal of having a Nature or Science publication isn’t necessarily that you expect the work to be cited much more heavily, but that you get to tell everyone else how great you must be because you have a publication in Nature. Now, on some level, we know that it’s silly to hold glamor mags in such high esteem, and Mayor’s data are consistent with that idea. In an ideal world, we’d read all papers ultra-carefully before making judgments about their quality, rather than using simple but flawed heuristics like what journal those papers happen to be published in. But this isn’t an ideal world, and the reality is that people do use such heuristics. So it’s to each scientist’s individual advantage (but to the field’s detriment) to take advantage of that knowledge.
  • Different fields have very different citation rates. And articles in different fields have very different shelf lives. For instance, I’ve heard that in many areas of physics, the field moves so fast that articles are basically out of date within a year or two (I have no way to verify if this is true or not). That’s certainly not true of most areas of psychology. For instance, in cognitive neuroscience, the current state of the field in many areas is still reasonably well captured by highly-cited publications that are 5 – 10 years old. Most behavioral areas of psychology seem to advance even more slowly. So one might well expect articles in psychology journals to peak later in time than the average Nature article, because Nature contains a high proportion of articles in the natural sciences.
  • Articles are probably selected for publication in Nature, Psych Science, and Psych Review for different reasons. In particular, there’s no denying the fact that Nature selects articles in large part based on the perceived novelty and unexpectedness of the result. That’s not to say that methodological rigor doesn’t play a role, just that, other things being equal, unexpected findings are less likely to be replicated. Since Nature and Science overwhelmingly publish articles with new and surprising findings, it shouldn’t be surprising if the articles in these journals have a lower rate of replication several years on (and hence, stop being cited). That’s presumably going to be less true of articles in specialist journals, where novelty factor and appeal to a broad audience are usually less important criteria.

Addressing these points would probably go a long way towards closing, and perhaps even reversing, the gap implied  by Mayor’s figure. I suspect that if you could do a controlled experiment and publish the exact same article in Nature and Psych Science, it would tend to get cited more heavily in Nature over the long run. So in that sense, if citations were all anyone cared about, I think it would be perfectly reasonable for scientists to try to publish in the most prestigious journals–even though, again, I think the pressure to publish in such journals actually hurts the field as a whole.

Of course, in reality, we don’t just care about citation counts anyway; lots of other things matter. For one thing, we also need to factor in the opportunity cost associated with writing a paper up in a very specific format for submission to Nature or Science, knowing that we’ll probably have to rewrite much or all of it before it gets published. All that effort could probably have been spent on other projects, so one way to put the question is: how many lower-tier publications in the hand is a top-tier publication in the bush worth?

Ultimately, it’s an empirical matter; I imagine if you were willing to make some strong assumptions, and collect the right kind of data, you could come up with a meaningful estimate of the actual value of a Nature publication, as a function of important variables like the number of other publications the authors had, the amount of work invested in rewriting the paper after rejection, the authors’ career stage, etc. But I don’t know of any published work to that effect; it seems like it would probably be more trouble than it was worth (or, to get meta: how many Nature manuscripts can you write in the time it takes you to write a manuscript about how many Nature manuscripts you should write?). And, to be honest, I suspect that any estimate you obtained that way would have little or no impact on the actual decisions scientists make about where to submit their manuscripts anyway, because, in practice, such decisions are driven as much by guesswork and wishful thinking as by any well-reasoned analysis. And on that last point, I speak from extensive personal experience…