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ABSTRACT
Feature extraction is a critical component of many applied
data science workflows. In recent years, rapid advances in
artificial intelligence and machine learning have led to an
explosion of feature extraction tools and services that al-
low data scientists to cheaply and effectively annotate their
data along a vast array of dimensions—ranging from de-
tecting faces in images to analyzing the sentiment expressed
in coherent text. Unfortunately, the proliferation of power-
ful feature extraction services has been mirrored by a cor-
responding expansion in the number of distinct interfaces
to feature extraction services. In a world where nearly ev-
ery new service has its own API, documentation, and/or
client library, data scientists who need to combine diverse
features obtained from multiple sources are often forced to
write and maintain ever more elaborate feature extraction
pipelines. To address this challenge, we introduce a new
open-source framework for comprehensive multimodal fea-
ture extraction. Pliers is an open-source Python package
that supports standardized annotation of diverse data types
(video, images, audio, and text), and is expressly with both
ease-of-use and extensibility in mind. Users can apply a wide
range of pre-existing feature extraction tools to their data in
just a few lines of Python code, and can also easily add their
own custom extractors by writing modular classes. A graph-
based API enables rapid development of complex feature
extraction pipelines that output results in a single, stan-
dardized format. We describe the package’s architecture,
detail its major advantages over previous feature extraction
toolboxes, and use a sample application to a large functional
MRI dataset to illustrate how pliers can significantly reduce
the time and effort required to construct sophisticated fea-
ture extraction workflows while increasing code clarity and
maintainability.

1. INTRODUCTION
Feature extraction and input annotation are critical ele-
ments of many machine learning and data science appli-
cations. It is common for data scientists to first extract
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low-level or high-level semantic features from video, text,
or audio input, and subsequently feed these features into a
statistical model [6; 12; 13]. In many settings, the quality
of one’s features or annotations can be a greater determi-
nant of an application’s success than any subsequent analy-
sis or modeling decisions. For example, the capacity of sen-
timent analysis models to make sense of speech transcripts
extracted from human conversations is inherently limited
by the quality of the underlying speech-to-text transcrip-
tion. If a transcript looks like word salad to human eyes, it
is unlikely to be rehabilitated by artificial ones. Fortunately,
groundbreaking advances in computer vision, speech recog-
nition, and other domains of artificial intelligence have led to
a recent proliferation of highly performant, publicly accessi-
ble feature extraction services. Cloud-based APIs developed
by major companies such as Google, IBM, and Microsoft, as
well as hundreds of smaller startups, now allow data scien-
tists to extract rich annotations from videos, images, audio,
and text cheaply and at scale. Consequently, the once monu-
mental challenge of extracting near-human-level feature an-
notations now appears to be, if not completely overcome,
then at least substantially mitigated.

In practice, however, a number of important technical bar-
riers remain. While the proliferation of high-quality feature
extraction services has made state-of-the-art machine learn-
ing technology widely accessible, harnessing this technology
in an optimal way often remains a tedious and confusing pro-
cess. Which of the hundreds of available speech-to-text, face
recognition, or sentiment analysis services or tools should
one use? How can one efficiently combine the features ex-
tracted using different tools into a cohesive pipeline? And
what can one do to ensure that one’s codebase remains oper-
ational in the face of frequent changes to third-party APIs?
There are, at present, no easy answers to such questions;
consequently, data scientists developing pipelines that in-
volve extensive feature extraction are often forced to write
and maintain highly customized and potentially large code-
bases. The lack of standardization with respect to feature
extraction and data annotation is, in our view, one of the
most pervasive and detrimental problems currently facing
the applied data science community.

Here we introduce a new feature extraction framework de-
signed to address this critical gap. Pliers (available at
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https://github.com/tyarkoni/pliers) is an open-source Python
package that provides a standardized, easy-to-use interface
to a wide range of feature extraction tools and services. In
contrast to previous feature extraction tools, pliers is inher-
ently multimodal: it supports annotation of diverse data
types (video, images, audio, and text), and can seamlessly
and dynamically convert between data types as needed (e.g.,
implicitly transcribing speech in video clips in order to en-
able application of text-based feature extractors). The pack-
age is designed with the twin goals of ease-of-use and exten-
sibility in mind: users can apply a wide range of pre-existing
feature extraction tools to their data in just a few lines of
Python code, and can also easily add their own custom ex-
tractors by writing modular classes. A graph-based API
allows users to very rapidly develop complex feature extrac-
tion pipelines that output results in a single, standardized
format. Thus, pliers can be easily inserted into many exist-
ing data science workflows, significantly reducing develop-
ment time while increasing code clarity and maintainability.

The remaining sections are organized as follows. In section
2, we review relevant previous work, focusing on existing
feature extraction toolkits. In section 3, we describe the
architecture of the pliers package and highlight several core
features with potentially beneficial implications for applied
data science workflows. We then demonstrate the flexibility
and utility of the package in section 4, where we use pliers to
rapidly extract and analyze a broad range of features from
the movie stimuli in a large functional neuroimaging dataset.
We conclude with a brief discussion of the implications of
our work and planned future directions.

2. BACKGROUND
In recent years, major technology companies (e.g., Google
and IBM) and smaller startups (e.g., Clarifai and Indico)
have released dedicated machine learning services for var-
ious computer vision and signal processing tasks. These
services can individually be thought of as feature extrac-
tion frameworks, each with its own advantages and disad-
vantages. While these services span an enormous range of
features—including everything from face recognition to mu-
sical genre detection to part-of-speech tagging—the ability
to systematically compare them, or to combine them into
cohesive analysis pipelines, is limited by practical consider-
ations. Because each service or tool has its own API, usage
requirements, and/or client libraries, there is often consider-
able overhead involved in accessing and using even a single
service, let alone chaining multiple services into integrated
pipelines for multimodal feature extraction (e.g., running
sentiment analysis on text transcribed from speech audio,
in addition to annotating visual sentiment cues).

In an effort to provide common interfaces to different tools,
several authors have previously introduced toolboxes that
support multiple feature extraction tools. For example, the
SpeechRecognition package in Python [21] supports API calls
to several audio transcription services via a single interface;
the MIRToolbox [11] supports extraction of both low-level
and high-level audio features; the MMFEAT feature extrac-
tion toolkit [9] provides an abstraction for a number of vi-
sual and audio feature extraction tools used in natural lan-
guage processing (NLP) frameworks (e.g., bag of features
models, etc.); and the feature-extraction package [8] sim-
plifies extraction of a number of computer vision features

commonly used in image classification tasks. Such packages
allow their users to call different feature extraction algo-
rithms or services via a standardized interface, reducing de-
velopment time and avoiding the need to look through each
API’s documentation for usage examples.

While existing feature extraction packages take important
steps towards a unified feature extraction interface, most
also have a number of major limitations. First, virtually
all previous tools focus on one particular analysis domain—
e.g., speech recognition, NLP, or computer vision. We are
not aware of any existing toolbox that attempts to cover
everything from video to text (though a few support both
video and audio—e.g., the feature-extraction package). Sec-
ond, with a few notable exceptions (e.g., the Essentia au-
dio analysis package [1]), most frameworks cannot be easily
extended by end users—either because their code is not re-
leased under a permissive open-source license, or because the
codebase is not designed with modularity in mind. Third,
many frameworks focus primarily on traditional low-level
visual or audio features use for classification or discrimina-
tion tasks, and lack support for high-level perceptual labels
of the kind facilitated by recent advances in deep learning.
Lastly, and perhaps most importantly, existing frameworks
tend to offer a limited degree of abstraction. While many
provide a unified interface for querying multiple services or
tools, users are still typically responsible for writing sup-
plementary code to pass inputs and handle outputs, chain
multiple services, and so on. Our goal in developing the pli-
ers framework was to address each of the above limitations
by providing a standardized feature extraction interface that
was (i) multimodal, (ii) comprehensive, (iii) extensible, and
(iv) easy to use.

3. ARCHITECTURE

3.1 Overview
With these goals in mind, we sought to develop an in-
tuitive, standardized, and relatively simple API, taking
particular cues from the object-oriented transformer inter-
face popularized by the scikit-learn machine learning pack-
age [3]. At its core, pliers is structured around a hier-
archy of Transformer classes that each have a modu-
lar, well-defined role in either extracting feature informa-
tion from an input data object (Extractor classes), or
converting the input data object into another data object
(Converter classes). As in scikit-learn, the defining fea-
ture of a Transformer class in pliers is its implementa-
tion of a .transform() method that accepts a single in-
put. The input data types are represented using a separate
Stim (short for stimulus) hierarchy that includes subclasses
such as VideoStim, AudioStim, and so on. One can thus
think of pliers workflows as directed acyclic graphs (DAGs)
in which Stim objects are repeatedly transformed as they
flow through a graph, culminating in one or more feature
extraction steps at the terminal node(s).

The easiest way to illustrate these principles is with a short
Python code sample:



video = VideoStim(’my_video.mp4’)
conv = FrameSamplingConverter(hertz=1)
frames = conv.transform(video)
ext = GoogleVisionAPIFaceExtractor()
results = ext.transform(frames)

Listing 1: A simple pliers example

This simple snippet of code reads in a video file, converts
it into a series of static image frames (sampling frames at
a rate of 1 per second), and then uses the Google Cloud
Vision API to perform face recognition on each image, re-
turning the aggregated results from all images in a stan-
dardized format that can be easily operated on (see 3.3.4).
Thus, with very little configuration and code, users are able
to perform a complex feature extraction operation using a
state-of-the-art face detection API. The benefits of pliers’
standardized Transformer API can be further appreci-
ated by considering that we could seamlessly replace the
GoogleVisionAPIFaceExtractor call in Listing 1 with
one of the many other pliers Extractor classes that support
image inputs—for example, a ClarifaiAPIExtractor that
performs object recognition using the Clarifai service (clari-
fai.com), a TensorFlowInceptionV3Extractor that la-
bels images using a pre-trained Tensor Flow inception model
[16], and so on. Moreover, as discussed later (3.3.4), pliers
also provides a higher-level graph API that allows users to
compactly specify and manage large graphs potentially in-
volving dozens of transformation nodes.

3.2 Implementation in Python
Pliers is implemented in the Python programming language,
and relies heavily on popular Python scientific computing
libraries (most notably, numpy, scipy, and pandas). This
choice reflects the widespread usage of Python within the
data science community, with many open source libraries
available for a variety of tasks. In particular, a large num-
ber of feature extraction tools and services are either im-
plemented in Python, or have high-level python bindings
or client libraries—greatly simplifying our goal of providing
a common interface. The high-level, dynamic nature of the
language further facilitates our primary goal of usability and
simplicity while remaining relatively performant. In addi-
tion to its core Python dependencies, pliers also depends on
the moviepy Python package for video and audio file manip-
ulation, which in turn depends on the cross-platform ffmpeg
library. Many of the individual feature extractors supported
in pliers also have their own dependencies (e.g. the Google
Cloud Vision extractors rely on the google-api-python-client
library). Pliers is maintained under public version control
on GitHub (https://github.com/tyarkoni/pliers). Develop-
ment follows best practices in the open-source community:
we perform continuous integration testing, maintain rela-
tively comprehensive documentation, and include several in-
teractive Jupyter notebooks that exemplify a range of uses
of the pliers API. Pliers is platform-independent, though it
is tested primarily on Linux and OS X environments.

3.3 Core Features
Pliers has a number of core features that distinguish it from
previous feature extraction toolboxes, and can help signif-
icantly simplify and streamline data scientists’ feature ex-
traction pipelines. These include (i) support for a wide range
of input modalities; (ii) breadth of feature extractor cover-

age; (iii) a highly extensible design; and (iv) a high degree
of abstraction. We discuss each of these in turn.

3.3.1 Multimodal support
Pliers is expressly designed to support multimodal feature
extraction from a wide range of input modalities. At present,
pliers supports four primary input data types: video, image,
audio, and text. Each of these modalities is supported by
a hierarchy of classes covering specific use cases (e.g., the
base ImageStim class has a VideoFrameStim subclass
that represents image frames extracted from video clips).
Pliers also implements a generic CompoundStim class that
provides slots for any other type of Stim class, allowing
users to create custom inputs to feature extractors that re-
quire a combination of different input types. Importantly,
and as discussed in more detail in 3.3.4, pliers allows users
to seamlessly convert between different Stim classes, mak-
ing it easy to build complex graphs that integrate feature
extractors from multiple modalities. Collectively, the sup-
ported input types cover many common use cases in applied
data science and scientific research settings (we provide a
sample application to functional neuroimaging data in sec-
tion 4)—and as described in 3.3.3, the Stim hierarchy can
be easily extended to support new use cases.

3.3.2 Breadth
Pliers seeks to provide unified access to a potentially very
large set of feature extraction tools and services. At present,
the package supports over 30 different extractors, many of
which individually support a large number of more spe-
cific models. The current selection of supported extractors
has been largely motivated by a proof-of-concept desire to
demonstrate the breadth of features that pliers can provide
access to; as detailed in the next section, we expect the li-
brary of supported tools and services to increase rapidly.
Here we describe a partial selection of implemented fea-
ture extractors that run the gamut from low-level perceptual
analysis to high-level semantic annotations. These include:

• Speech-to-text converters, including wrappers for most
of the APIs implemented in the SpeechRecognition pack-
age [21], in addition to a custom transcription con-
verter that uses IBM’s Watson speech-to-text API and
has the particular advantage of providing onsets for in-
dividual words.

• A TensorFlowInceptionV3Extractor that uses a
pretrained deep convolutional neural network (CNN)
model based on the Inception V3 architecture [17] to
label objects in images. Pliers seamlessly handles the
download, installation, and execution of the associ-
ated TensorFlow model and code in the background,
illustrating the package’s capacity to support not only
API-based services, but also a potentially wide range
of pretrained, locally-executed models.

• An OpticalFlowExtractor that uses OpenCV’s
Farneback algorithm to quantify the amount of frame-
to-frame optical flow in a video. The availability of
Python bindings for OpenCV makes it easy to add any
number of other OpenCV-based feature extractors (see
3.3.3).

• Extractors and converters for most of the Google Cloud
Vision and Speech API tools—e.g., face detection, ob-
ject labeling, and speech-to-text conversion. These are



some of the most widely used feaure extraction ser-
vices, and pliers makes it considerably easier to apply
them to a diverse range of inputs.

• A PredefinedDictionaryTextExtractor that
maps individual words onto pre-existing dictionaries
accessible via the web. Many of these dictionaries
were generated via large-scale psycholinguistic studies
involving hundreds of human participants rating thou-
sands of common words; thus, pliers provides easy ac-
cess to lexical variables ranging from word frequency
and contextual diversity to age-of-acquisition norms to
affective ratings of word valence.

• A STFTExtractor that extracts acoustic power in
user-configurable frequency bands by applying a short-
time Fourier transform to audio input.

• An IndicoAPIExtractor that interfaces with the
Indico API and supports application of a range of
models—including sentiment analysis, emotion detec-
tion, and personality inference—to text.

3.3.3 Extensibility
The current set of supported feature extractors represents
only a fraction of the coverage we intend to eventually pro-
vide. We are continuously adding support for new feature
extractors and new data types, and encourage others to as
well. To date, we have placed emphasis on adding support
for (i) high-level APIs capable of providing human-like an-
notations (e.g., presence of object in an image, sentiment of
text), and (ii) other feature extraction toolkits or services
that already themselves support multiple extractors (e.g.,
the Google Cloud Vision APIs, or the Python SpeechRecog-
nition package). However, in principle, virtually any fea-
ture extraction tool that operates over one of the supported
input data types can be implemented in pliers. To en-
courage contributions, we have developed pliers as a highly
modular, easily-extensible, object-oriented framework. List-
ing 2 provides an example of a simple but fully functional
Extractor that takes text inputs and extracts the number
of characters in each string. While this example is trivial,
it illustrates the speed with which a new Extractor can
be developed and immediately embedded into a full pliers
workflow. The bare minimum required of a new Extractor
class is that it (i) specifies the input data type(s) it operates
on (text, video, etc.) and (ii) defines a new extract()
method that takes a Stim as input, and returns a new ob-
ject of class ExtractorResult (see 3.3.4).

class LengthExtractor(Extractor):

_input_type = TextStim

def _extract(self, stim):
value = np.array([len(stim.text.strip())]))
return ExtractorResult(value, stim, self,

features=[’text_length’])

Listing 2: Sample code for an Extractor class that counts
the number of words in each text input

In many cases, users do not even have to write new ex-
tractors in order to add valuable new functionality. Some
Extractor classes provide access to named resources that
are loaded from a static configuration file, and functionality
can thus be extended simply by adding new entries. For

example, the PredefinedDictionaryExtractor men-
tioned above provides access to many web-based dictio-
nary resources that map individual words onto correspond-
ing numerical values (e.g., psycholinguistic databases that
provide word frequency, age-of-acquisition, or emotional
valence norms for individual words [2; 10; 20]). New
lookup dictionaries of this kind can be added simply by
adding new entries to a JSON configuration file bundled
with the pliers package. Listing 3 provides a sample (par-
tial) entry from this file that encodes instructions to the
PredefinedDictionaryExtractor on how to download
and preprocess a popular set of age-of-acquisition norms
[10].

{"aoa": {
"title": "Age-of-acquisition (AoA) norms for
over 50 thousand English words",
"description_url": "http://crr.ugent.be/archives/806",
"source": "Kuperman, V., Stadthagen-Gonzalez, H.,
& Brysbaert, M. (2012). Age-of-acquisition ratings
for 30,000 English words. Behavior Research Methods,
44(4), 978-990.",
"url": "http://crr.ugent.be/papers/AoA_51715_words.zip",
"format": "xls",
"language": "english",
"index": "Word"

}}

Listing 3: Sample resource available through the Predefined-
DictionaryExtractor

In still other cases, harnessing new functionality is even eas-
ier than adding new entries to a config file. Because many
of the feature extraction APIs that pliers supports allow
users to easily control the remote resource or model used in
feature extraction, specifying a different resource can be as
easy as passing in the appropriate parameter. For example,
the IndicoAPIExtractor—which provides access to the
Indico.io service’s text analysis tools—accepts an initializa-
tion argument that specifies which of its available models
(e.g., ‘sentiment’, ‘emotion’, or ‘personality’) to use. As
new models are introduced to the Indico.io service, they au-
tomatically become available to pliers users.

Extensibility in pliers is not limited to adding new trans-
formers; new input data types can also be readily added
by creating new Stim classes—most commonly by simply
subclassing an existing Stim class. For example, while pli-
ers currently does not provide a built-in interface to social
media services such as Facebook or Twitter, our near-term
roadmap includes plans to develop tools that make it easy to
retrieve tweets and Facebook posts as native pliers objects
(e.g., TweetStim or FacebookPostStim classes that con-
tain metadata in addition to multimedia)—at which point
users will be immediately and effortlessly able to apply any
of the compatible feature extractors available in pliers.

3.3.4 Abstraction
One of our primary goals in developing pliers is to to cre-
ate a framework that makes feature extraction as easy as
possible, enabling data scientists to develop complex fea-
ture extraction pipelines using clearer, more compact code.
To this end, pliers features an extremely high level of ab-
straction. Many steps that would require explicit routines
in other feature extraction packages are performed implic-
itly in pliers. Here we highlight four particular features in



pliers that greatly simplify the feature extraction process in
comparison to other feature extraction packages or bespoke
pipelines.

Implicit Stim conversion. Pliers is capable of implicitly
converting between different data types to facilitate feature
extraction on an ad hoc basis. For example, suppose one
wishes to apply a sentiment extractor to the dialogue in
a series of videos. Accomplishing this requires a user to
first extract the audio track from the video, and then apply
speech-to-text transcription to the audio. Helpfully, pliers
is usually able to identify and implicitly execute conversions
between different input types, minimizing the user’s work-
load and considerably streamlining the feature extraction
pipeline. For example, the two code snippets in Listing 4
produce identical results.

# Option A: explicit conversion
conv1 = VideoToAudioConverter()
audio = conv1.transform(video)
conv2 = AudioToTextConverter()
text = conv2.transform(audio)
ext = IndicoAPIExtractor(model=’sentiment’)
result = ext.transform(text)

# Option B: implicit conversion
ext = IndicoAPIExtractor(model=’sentiment’)
result = ext.transform(video)

Listing 4: Explicit vs. implicit stimulus conversion

Here, pliers implicitly identifies and applies a valid conver-
sion trajectory that transforms a video into text (by strip-
ping the audio track from the video and submitting it to
a speech-to-text API). Pliers provides package-level control
over which Converter to use in cases of ambiguity (e.g., in
the above example, the user could specify which of several
speech-to-text services they prefer to work with). Moreover,
all Stim instances retain a comprehensive internal log of ap-
plied transformations, allowing the user to easily determine
what steps were taken in order to produce the final result.

Native handling of iterable inputs. Every pli-
ers Transformer (including all Extractors and
Converters) is inherently iterable-aware, and can be
passed an iterable (i.e., a Python list, tuple, or generator)
of Stim objects rather than just a single Stim. The
transformation will then be applied independently to each
Stim. Furthermore, some Stim classes are naturally
iterable. For example, a VideoStim is made up of a series
of VideoFrameStims, and a ComplexTextStim is made
up of TextStims. For efficiency and memory conservation
reasons, the elements will typically be retrieved using
Python generator expressions (functions that support lazy
evaluation of iterable objects) rather than lists.

Graph API. Pliers also implements a unique graph inter-
face that enables users to effortlessly go from complex stim-
uli to a potentially large number of features extracted from
multiple modalities. The interface allows users to specify
Converter and Extractor nodes through which a stim-
ulus can be run. Suppose we have a video that we want to
tag for visual annotation, audio features, lexical variables
(e.g., the normative frequency of each spoken word), and
spoken word sentiment. This seemingly complex task can
be simply configured using the code in Listing 5. Moreover,
pliers allows users to easily visualize the executed graph by
leveraging the graphviz package; Figure 1 displays the graph

Figure 1: Diagram of the full graph generated by the code
in Listing 5.

generated by the code in Listing 5. Note that, as discussed
above, it is usually not necessary to explicitly specify Stim
conversion steps, as these will be detected and injected im-
plicitly (and hence the diagram in Figure 1 contains many
more nodes than were specified in Listing 5).

clips = [’video1.mp4’, ’video2.mp4’]
g = Graph([

(FrameSamplingConverter(hertz=1),
[’ClarifaiAPIExtractor’,
’GoogleVisionAPIFaceExtractor’]),

STFTAudioExtractor(hop_size=1, freq_bins=5),
PredefinedDictionaryExtractor(

[’SUBTLEXusfrequencyabove1/Lg10WF’,
’concreteness/Conc.M’]),

IndicoAPIExtractor(models=[’sentiment’])
])
results = g.run(clips)

Listing 5: Sample graph generation code

Consolidated output. One of the major sources of busy-
work data scientists often face when building feature extrac-
tion pipelines is the need to postprocess and reformat the
results returned by different feature extraction tools. Pli-
ers addresses this problem by ensuring that all Extractor
classes output an ExtractorResult object. This is a
lightweight container that represents all of the extracted
feature information returned by the Extractor in a com-
mon format, and also stores references to the Stim and
Extractor objects used to generate the result. The raw
extracted feature values are stored in the .data property,
but typically, users will want to work with the data in a more
convenient format. Fortunately, every ExtractorResult
instance exposes a .to df() method that returns a format-
ted pandas DataFrame (a tabular data type widely used
in Python data science applications). Additionally, pliers
provides built-in tools to easily merge the data from mul-



tiple ExtractorResult instances; by default, executing a
Graph such as the one in Listing 5 will return a single merged
pandas DataFrame that contains all extracted feature infor-
mation for all processed inputs, along with added timestamp
and duration columns that facilitate further manipulation,
plotting, and analysis of the results.

4. APPLICATION TO FUNCTIONAL MRI
To demonstrate the utility of having a standardized, high-
level, multimodal feature extraction framework, we applied
pliers to the domain of human functional neuroimaging. A
primary goal of neuroimaging research is to understand how
the brain processes and integrates information from different
sensory modalities. In pursuit of this goal, researchers tradi-
tionally employ “factorial designs that experimentally con-
trast the brain’s response to different sets of stimuli which
vary systematically along one or more dimensions. For ex-
ample, to study the neural substrates of face processing, one
might compare the brain activity elicited by images of faces
to the responses elicited by other image categories such as
buildings, animals, or outdoor scenes. Critically, if both sets
of images do not differ along irrelevant dimensions—such as
luminosity, size or color—differences in brain activity should
reflect face-specific processing [7].

Unfortunately, this idealized strategy has several important
limitations. Most notably, in practice, it is rarely possible to
ensure that the stimuli in experimental conditions vary only
along the target dimension of interest. Almost invarably,
stimuli vary on many additional dimensions that are not
of interest, and may confound the neural response, but are
omitted from the statistical model. Moreover, by studying
the phenomena of interest under highly controlled, simplifed
conditions, experiments often lose their ecological validity—
that is, they poorly approximate the complexities of real
world scene processing and understanding.

An alternative approach is to use rich, “naturalistic” stimuli,
such as audiovisual movies, to examine the dynamic neural
response to a large number of potential features. By maxi-
mizing the number of predictors in one’s statistical model,
one can better control for potential confounds, while simul-
taneously maximizing ecological validity. However, the high
cost of manually annotating a large number of features has
made such naturalistic approaches relatively rare. Fortu-
nately, pliers allows us to generate large sets of potential
predictors rapidly and automatically.

Here, we modeled the brain’s responses to a variety of au-
tomatically extracted features using publicly accessible data
from the seminal Human Connectome Project (HCP [4; 18]).
In this study, participants underwent functional magnetic
resonance imaging (fMRI) while watching a series of short
films, for a total of 60 minutes of audio-visual stimulation.
We applied the pliers Graph from Listing 5 to the video
stimuli used in the study, resulting in a timeline of feature
vectors that span the full duration of the scans (an extract
is displayed in Figure 2). We then used the Nipype workflow
engine [5]—which provides uniform interfaces to neuroimag-
ing analysis packages such as FSL [15]—to predict brain ac-
tivity using a subset of 10 automatically extracted features
across 35 subjects.

We omit the full details of the fMRI analysis pipeline and
statistical model here, as our goal here is to illustrate the
practical application of pliers in complex feature extraction

workflows rather than to draw conclusions about the neural
correlates of different features. The key point is simply that
we model the neural response (technically, the hemodynamic
response, which is an indirect measure of neuronal activity)
as a linear function of the extracted features. An abridged
version of the mixed model we fit is:

Yit = β0+β1X1it+...+βkXkit+u0i+u1iX1it+...+ukiXkit+eit,

where Yit is the ith participant’s neural response at time
t, β0 is a fixed intercept, βk is the estimated fixed regres-
sion coefficient for the kth extracted feature, and Xkit is the
value of the kth extracted feature at time t in the ith par-
ticipant, as obtained using pliers. The u terms represents
random subject intercepts and slopes intended to account
for between-subject variance, and eit is the residual model
error. For the sake of brevity, we omit a number of other
terms that were included in the actual statistical model in
order to account for fMRI-specific modeling concerns (e.g.,
temporal autocorrelation, low-frequency noise, participant
head movement, etc.).

This standard neuroimaging model is fit separately in each
of over 200,000 brain voxels, resulting in whole-brain acti-
vation maps displaying those voxels across the brain that
were consistently associated (as assessed using a standard
significance test, and correcting for multiple comparisons)
with each of the extracted features. We were able to iden-
tify distributed patterns of neural activity that were statis-
tically significantly associated with all but one of the ex-
tracted features (Figure 3). While interpretation of these
results is of little importance here, we note in passing that
a number of the patterns exhibited in these statistical maps
replicated the neural correlates previously identified in more
conventional factorial experimental designs. For example, in
the auditory domain, speech was associated with activity in
areas established language processing regions, such as the
superior frontal gyrus (SFG) [14], and in the visual domain,
distinct image tags such as “outdoors”, “street” and “light”,
were associated with differential activation in brain regions
important for natural scene recognition, such as visual and
retrosplenial cortices [19].

In the present case study, we demonstrated how automated
feature extraction can be used to rapidly test novel hy-
pothesis in naturalistic fMRI experiments. Pliers allows
researchers to quickly and flexibly test a potentially large
number of neuroscientifically interesting hypotheses using
pre-existing fMRI datasets. Furthermore, the rapid and au-
tomated nature allows researchers to quickly generate results
and more easily replicate their analyses in new datasets,
increasing the generalizability of their findings. Although
more work is necessary to optimize statistical modeling in
naturalistic datasets—in part due to concerns of collinearity
between extracted features—the present approach enables a
new class of neuroimaging study that promises to maximize
ecological validity and encourage re-use of openly accessible
datasets. Of course, this example highlights just one among
many potential uses for our feature extraction framework.

5. LIMITATIONS
In its present state, pliers is already fully functional and
suitable for use in feature extraction pipelines across a range
of applied data science and research settings. Nevertheless,



Figure 2: Timeline of automatically extracted features across three periods of the movie stimulus. We
used the ClarifaiAPIExtractor to label four image classes (‘street’, ‘outdoors’, ‘light’ and ‘adult’) and the
GoogleFaceAPIExtractor to determine the probability that a face was present. Next, we applied the
IBMSpeechAPIConverter to transcribe the movie audio and detect the presence of speech (‘speech’). For each transcribed
word we used a PredefinedDictionaryExtractor to extract lexical norms for word ‘frequency’ and ‘concreteness’, and
used the IndicoAPIExtractor to quantify ‘sentiment. Finally, a STFTAudioExtractor was used to quantify acoustic
power within the 60-250 hz frequency range (where most human speech is expressed).

pliers remains under active development, and currently has
a number of limitations worth noting. First, while pliers
already supports a number of state-of-the-art, widely used
feature extraction tools and services, there are hundreds, if
not thousands, of others that are currently unsupported but
that could be readily added to the package. The utility of
pliers should continue to increase as we and others continue
to add new extractors to the package.

Second, our emphasis on ease-of-use and a high degree of
abstraction sometimes comes at the cost of decreased per-
formance or a loss of fine-grained control. While pliers
supports basic caching of transformer outputs in order to
prevent repeated application of computationally (or, in the
case of some APIs, financially) expensive transformations,
and adopts lazy evaluation patterns whenever possible, it
otherwise makes no explicit effort to optimize memory con-
sumption or CPU usage. Similarly, many of the supported
Extractors do not provide tight control over every param-
eter of the underlying tool or algorithm. For example, the
OpticalFlowExtractor (which quantifies the amount of
motion between consecutive movie frames) offers no control
over the parameters of the Farneback algorithm it relies on.
Instead, pliers places emphasis on easy specification of those
parameters most likely to vary across common use cases.
For example, the ClarifaiAPIExtractor allows the user
to specify (upon initialization) the Clarifai model to query,
as well as any specific classes or labels to retrieve (e.g., to
quantify the likelihood that an ”animal” is present in each
image).

Lastly, an important potential challenge for pliers is the con-
tinued maintenance of the package in light of not-infrequent
version upgrades to the various tools and services that pli-
ers supports. We expect that the third-party APIs pliers
leverages for most of its extractors will improve over time,
which means that some extractor code will occasionally need
to be reconfigured to account for external API changes. To
combat this, we intend to diligently keep up-to-date with
the supported APIs and services. Maintenance of the pliers
codebase is facilitated by the use of a continuous integra-
tion testing service (Travis-CI) that notify the developers
whenever a previously functional transformer begins to fail.

In addition to addressing the above limitations, there are
a number of major enhancements on our near-term devel-
opment agenda. These include basic parallelization func-
tionality, integration with social media APIs, and persisting
intermediate conversion results to a database or disk.

6. CONCLUSION
We have outlined the key properties and major benefits of a
new framework for high-level, standardized, multimodal fea-
ture extraction. Pliers enables users to easily and quickly
extract a variety of image, audio, and text features using
a standardized, highly extensible, and relatively simple in-
terface, providing an effective solution to one of the most
common problems faced by applied data scientists.
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