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Why should we care about statistical power? It turns out that many research

findings may be false, and low power is one of the main culprits [1]. Low power,

by definition, reduces the probability of discovering real effects. In other words,

compared to well-powered studies, underpowered studies produce more false

negatives—they conclude no effect exists when in reality one does. However, low

statistical power also undermines the reliability of research findings in two less-

appreciated ways. First, it reduces the probability that an observation passing the

threshold for claiming discovery (i.e.,

statistical significance) actually reflects

a real effect. Second, it can lead to an

exaggerated estimate of the magnitude

of an effect. This effect inflation is

sometimes referred to as the “Winner’s

Curse,” the analogy being an auction,

where the winner typically pays an

inflated price. It often occurs when

researchers claim a discovery based on

thresholds (e.g., statistical significance,

or a Bayes factor of a given value; see

additional readings for a more detailed

description of these issues) [2,3]. In this chapter, we highlight not only the causes

and consequences of low statistical power, but also how functional magnetic reso-

nance imaging (fMRI) researchers are addressing these issues and why we can

remain hopeful.

The concept of statistical power is intrinsically linked to the Null Hypothesis

Significance Testing (NHST) framework that continues to dominate the biomedi-

cal sciences. We can, however, frame the problem in other ways. For instance,

some researchers encourage a taxonomy that discusses errors of inference in terms

of magnitude (Type M) and sign (Type S) [4], rather than the standard false posi-

tive (Type 1) and false negative (Type 2) used in the NHST framework. Smaller

sample sizes, all other things being equal, will increase the risk of errors for
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both magnitude and sign—in other words, estimates are more likely to deviate

substantially from the true population effect, and also more likely to be in the

opposite direction [4]. This is linked to the concept of “vibration of effects” [2]—

the tendency of small, underpowered studies to be imprecise and therefore

provide a wide range of estimates around the true effect size. This is particularly

problematic when stringent significance thresholds and publication bias

against “null” results conspire to select only the extremes of that range for

publication.

Researchers have attempted to estimate the average statistical power of studies

across the biomedical sciences. This endeavor remains challenging due to the diffi-

culty in estimating the magnitude of “true” effects (because what is published is

only a proportion of all the work conducted, and because of factors such as the

Winner’s Curse which means these published estimates will be imprecise and

potentially inflated). Conventionally, scientists aim for at least 80% power (i.e., a

20% chance of accepting a false negative). Evidence suggests, however, that aver-

age power is considerably lower. Within the neurosciences, researchers revealed

that average power ranges between B8% and B31% [2]—although the distribution

may depend on the study type and methodology [5]. These numbers mean that

somewhere between 69% and 92% of true effects go undetected. This pattern repli-

cates across a wider range of biomedical sciences [6]. In the neuroimaging litera-

ture, estimating effect sizes is even more complex. Nonetheless, a summary of

1131 fMRI studies conducted over a span of more than 20 years suggests that sam-

ple sizes have increased only modestly in this time. As of 2015, the median fMRI

study was only powered to detect large effect sizes (d5 0.75; [7,8]), whereas the

typical effect size for the phenomena being tested is likely to be smaller (d5 0.50;

[7]). Moreover, these estimates come from studies with relatively high-power com-

pared to most fMRI studies [9]. In other words, most fMRI studies don’t include

enough participants to detect the effects they seek using the standard NHST

approach.

Causes and consequence of low power in functional
magnetic resonance imaging research

Low statistical power is a problem for any type of research, but certain aspects of

fMRI research make the power problem more prominent, and the consequences

more troublesome. Here, we elucidate at least three prominent causes with a simple

example. Imagine we are conducting an fMRI study on working memory and want

to compare patients with a major depressive disorder (MDD) to a group of healthy

controls. First, the standard way of analyzing fMRI data divides the brain into about

a hundred thousand small cubes, termed “voxels,” and looks at the data from each

voxel independently. This so-called mass univariate analysis requires adjusting the
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significance threshold (for instance from P, .05 to P, .0001) in order to keep the

probability of a false positive low, but this stringent threshold requirement necessar-

ily reduces statistical power. Second, the sample size in fMRI studies has only risen

modestly over the years [7] despite increasing awareness of the power problem for

both functional and structural MRI [2]. In contrast to genetic research, where costs

have fallen dramatically enough to allow for high-powered studies, fMRI research

remains fairly expensive (around $500 per hour of scanner use) and these fees are

unlikely to drop substantially anytime soon. This price tag limits the acquisition of

large samples, and in addition, clinical samples, like MDD patients, are difficult to

recruit. These first two causes of low statistical power—adjusted statistical thresh-

olds and cost—would not be a major concern if the (expected) effect sizes were

very large. However, it is becoming increasingly clear that effect sizes in fMRI are

in the low to medium range, and this issue represents the third cause of low statisti-

cal power in fMRI research. Some of the large effect sizes in the fMRI literature

may emerge due to selective publication of positive results (publication bias, [8])

and the selection of participants who are not representative of the wider population

(sampling bias, [9]), or a combination of both. Of course, effect size varies by

domain, research question, design, and other factors; however, researchers are real-

izing that extremely large effects in fMRI research—which would be required to

achieve conventional statistical significance with current sample sizes—are rare.

Novel approaches (described in the following section) may substantially increase

power by increasing effect sizes.

As mentioned in the introduction, the consequences of low statistical power

extend beyond its definition—a high chance of missing true effects. Some

researchers may consider the increase in the false negative rate as an

acceptable trade-off to control the false positive rate. However, the three causes of

low power which we describe earlier (large number of dependent variables, small

sample sizes, and small effect sizes) have at least three less-appreciated, but

potentially far-reaching, consequences. First, as noted earlier, the combination of

a small sample size and stringent significance threshold induces a large potential

for inflation of statistically significant effects. Therefore effect sizes reported in

fMRI studies with relatively small samples can be highly inflated, or even in

the opposite direction of, the true effect [3]. In our example, we might find a

difference in prefrontal activity between the MDD and control group. When we

plot the extracted data of that region, the difference may look spectacularly large.

However, this is most likely a case of the described winner’s curse and the

true effects are much smaller. Second, this potential effect size inflation, in

combination with the availability of many dependent variables, can easily lead to

misleading inferences about the neural architecture of cognition [9]. In particular,

when true effects are small and diffusely distributed throughout the brain (a plau-

sible model for many cognitive processes and differences between psychiatric

patients and control groups), underpowered studies will tend to identify only a

small subset of effects, but with substantially inflated effect sizes—often leading
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researchers to incorrectly conclude that effects are strong and localized. When

looking at the statistical map comparing the MDD patients and control group, we

may observe just one or perhaps a few “spots” in the brain—yet the true differ-

ence in neural functioning between the two groups is much more likely to be dis-

tributed and small. Third, a consequence of low power is that different studies on

the same psychological process and/or psychiatric disorder will report disparate

results. One study might report a strong difference between MDD and controls in

one region, another study an effect in a completely different region, so that the

second doesn’t replicate the first. This situation requires no explanation other than

low power (although low power is rarely the first explanation a researcher will

reach for) [2], and it is exacerbated by various forms of reporting bias [8], making

it extremely difficult to achieve robust cross-study consensus.

Potential solutions and future directions

Fortunately, there are several solutions to the power problem in fMRI research. The

most straightforward way to increase statistical power is to increase the sample

size. This practice, of course, is easier said than done: fMRI scanning is expensive,

and the recruitment of specific populations difficult (e.g., psychiatric patients). If

we strive to maintain the conventional standard of a 5% chance of having at least

one false positive among many analyses (termed full family-wise error rate correc-

tion), we would need hundreds of participants—particularly for between-groups

comparisons (such as our MDD example) and analyses of individual differences

[10]. Some scientists are tackling this problem head-on and initiating large-

multicenter collaborations and building publicly available fMRI databases [7].

Another straightforward but controversial means to increase statistical power is

to apply a more lenient statistical significance threshold. The argument here is that

if true effects are small and distributed across the brain, we would need a lenient

significance threshold to detect them. The controversy surrounding this approach

stems from the parallel increase in false positives. This practice becomes hard to

justify when chosing a threshold that increases statistical power just enough to

detect at least one statistically significant effect [9].

A third way to increase statistical power is to apply a “region of interest” (ROI)

approach, where researchers focus on a single brain region, chosen a priori, instead

of all brain regions. Using an ROI approach, we can avoid the need to statistically

correct for thousands of voxels, and in turn increase the statistical power. However,

there is a great deal of flexibility in how one defines a region [10], and substantial

uncertainty in whether a certain region was truly chosen a priori. This potential for

“hypothesizing after results are known,” or HARKing [7], limits the conclusions

that we can draw. Preregistrating study protocols, and prespecifying regions of

interest, can help address this limitation (see previous chapter for more details).
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Finally, testing each voxel often yields low power and focusing only on ROIs

might miss other relevant areas of the brain. An emerging family of measures test

predefined patterns that involve multiple variables distributed across many brain

regions and/or systems to address both these concern. For example, rather than test-

ing 20 or so regions involved in working memory, you can define one a priori pat-

tern across the images and test the “expression of” or response in that pattern. In

the simplest terms, this would involve taking the average activity in the regions

included in the pattern. One recent study, for example, did just this [11]. The

researchers used neurosynth [12] to identify a working memory-related pattern,

averaged over this pattern to develop a single measure of working memory-related

activity, and then tested that single measure for effects of a psychosocial stressor

[11]. Another recent study has extended this concept to test averages over prede-

fined large-scale networks [13]. This example looked at seven predefined cortical

networks [14] that span the cortex. This approach largely reduces bias and the

potential for HARKing. Moreover, limiting the analysis to seven patterns reduces

the problem of multiple comparisons.

Multivariate pattern-based approaches can also yield much greater effect sizes,

and reduce the number of tests from many voxels to the expression of a single, pre-

defined pattern [15,16]. For example, when researchers applied an established mul-

tivariate pattern—a pain-predictive model called the Neurologic Pain Signature [17]

—to new individual participants, they found very large effect sizes for high versus

low pain (d5 1.2�3.50) [17,18]. Similarly, a negative emotion-predictive model,

the Picture Induced Negative Emotion Signature [19], differentiated emotionally

negative images from neutral images with an effect size of d5 4.69. Effect sizes

for a Vicarious Pain Signature [18], applied to comparisons of high versus low

observed pain in independent samples, ranged from d5 1.63�1.75 [18,20]. These

effect sizes are several times larger than those found in voxel-wise analyses [7],

and do not require correction for multiple comparisons when testing the magnitude

of the response in a pattern as a whole. These examples illustrate that novel analytic

approaches can address statistical power concerns and provide biomarkers for cog-

nitive and affective processes that can be validated and used across studies.

Conclusions

More and more researchers are beginning to appreciate the implications of low sta-

tistical power, from the need for a priori sample size calculations to inform study

design, to the impact of low power on the robustness of a study’s conclusions. In

the context of fMRI, high costs, small effect sizes, small sample sizes, and multiple

comparisons all exacerbate the problem of low statistical power. Fortunately, brain

researchers are increasingly addressing the issue of low power using both solutions

that apply to the wider scientific enterprise, as well as a number of fMRI-specific
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advances, including novel analytical approaches. Taken together, we can remain

cautiously optimistic that the robustness of the fMRI literature will improve.

Additional readings

Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, et al. Power failure:

why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci

2013;14(5):365�76. PubMed PMID: 23571845.

Poldrack RA, Baker CI, Durnez J, Gorgolewski KJ, Matthews PM, Munafo MR, et al.

Scanning the horizon: towards transparent and reproducible neuroimaging research. Nat

Rev Neurosci 2017;18(2):115�26. PubMed PMID: 28053326.

78 Casting Light on the Dark Side of Brain Imaging

http://refhub.elsevier.com/B978-0-12-816179-1.00011-6/sbref194
http://refhub.elsevier.com/B978-0-12-816179-1.00011-6/sbref194
http://refhub.elsevier.com/B978-0-12-816179-1.00011-6/sbref194
http://refhub.elsevier.com/B978-0-12-816179-1.00011-6/sbref194
http://refhub.elsevier.com/B978-0-12-816179-1.00011-6/sbref195
http://refhub.elsevier.com/B978-0-12-816179-1.00011-6/sbref195
http://refhub.elsevier.com/B978-0-12-816179-1.00011-6/sbref195
http://refhub.elsevier.com/B978-0-12-816179-1.00011-6/sbref195

	12 Power and design considerations in imaging research
	Causes and consequence of low power in functional magnetic resonance imaging research
	Potential solutions and future directions
	Conclusions
	Additional readings




