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 Analyses of individual differences play an important role in cognitive 

neuroscience studies of working memory and executive control (WM / EC). Many 

studies examining the neural substrates of working memory have relied upon correlations 

between brain activity and either task performance measures or trait-measures of 

cognitive ability. However, there are important conceptual and methodological issues that 

surround the use of individual difference measures to explain brain activation patterns.  

These issues make the interpretation of correlations a more complex endeavor than is 

typically appreciated. 

In this chapter, we review several issues that have been of long-standing concern 

in behavioral research on individual differences and that are equally relevant to cognitive 

neuroscience studies of executive control and working memory. The chapter is structured 

into three parts. In the first part, we provide a selective review of the literature in this 

domain, highlighting the most common individual difference approaches, as well as 

emerging trends.  The scope of the review is restricted to human neuroimaging studies 

using fMRI methods, since this is the domain in which most of the relevant work has 

been conducted. However, we expect that many of the issues and relevant findings will 

apply equally well to other cognitive neuroscience methods (e.g., PET, ERP, TMS, etc).   

The second part discusses the conceptual relationship between within-subject and 

individual differences analyses, focusing particular attention on situations in which 

within-subjects and individual differences analyses produce seemingly discrepant results. 

Finally, in the third part, we selectively review a number of statistical and methodological 

concerns that arise when conducting individual differences analyses of fMRI data, 

including the relative lack of statistical power, the absence of data concerning the 
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reliability of individual differences in the BOLD signal, and the deleterious effects of 

outliers. 

 

1. An overview of individual differences approaches 

Because of the high cost of conducting fMRI research and the importance of 

using large samples in individual differences research (see section 3), individual 

differences analyses in fMRI studies of WM / EC are typically conducted as an 

opportunistic complement to within-subject analyses, and are rarely the primary focus of 

a study. As such, most individual differences analyses of fMRI data are subject to many 

or all of the following constraints: 

 

(a) Relatively small sample sizes (the current norm appears to be between 15 – 

20 participants); 

(b) Systematic exclusion of participants with certain characteristics in order to 

ensure relatively homogeneous samples (e.g., screening participants based on 

age, gender, or WM capacity); 

(c) Use of experimental manipulations that are chosen in part because they are 

known to produce consistent changes in behavior across participants; 

(d) Titration of task difficulty to ensure that all participants' performance levels 

fall within bounds amenable to within-subject analyses (e.g., a minimum 

cutoff of  80% accuracy); 
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(e) Little or no measurement of pre-existing differences in participants' cognitive 

abilities and/or personalities (e.g., as might be assessed using batteries of 

psychometric measures). 

 

All of these constraints have a deleterious effect on the probability of detecting 

individual differences effects and/or generalizing significant effects to the broader 

population. While practical considerations make it difficult to overcome many of these 

limitations (e.g., collecting data from much larger samples is often not viable, from a 

financial perspective), a number of different approaches have been used to increase 

detection power and/or support stronger inferences when analyzing individual 

differences. We selectively highlight a number of fMRI studies that have used such 

approaches. 

 

Continuous vs. extreme groups designs 

While participant samples in most fMRI studies are randomly sampled (subject to 

general constraints on demographic variables such as age and gender), some studies have 

attempted to maximize power to detect individual differences effects by using extreme 

groups (EG) designs in which participants are stratified into two or more groups based on 

their scores on some variable of interest (e.g., WM capacity or fluid intelligence; Larson, 

Haier, LaCasse, & Hazen, 1995; Lee et al., 2006; Mecklinger, Weber, Gunter, & Engle, 

2003; Osaka et al., 2003). This approach increases power to detect effects by reducing the 

variance between participant groups relative to the variance within groups, thereby 
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inflating effect sizes and making them easier to detect1. For example, Lee and colleagues 

selected participants into two groups based on their scores on the Ravens' Advanced 

Progressive Matrices (RAPM; Raven, Raven, & Court, 1998), a putative measure of g, or 

general  intelligence (Lee et al., 2006). Both groups showed increased activation in 

frontal and parietal regions when performing a high g-loaded task relative to a low g-

loaded cognitive tasks; however, the increase was substantially greater for the high-g 

group than the low-g group. The effect sizes observed (with peak correlations of about .8 

between RAPM scores and brain activation) would almost certainly have been smaller if 

a random sample of participants had been recruited.  

The increase in power obtained using EG designs is not without its costs (for 

review, see Preacher et al., 2005). Inflated effect sizes produced by EG designs may lead 

researchers to overestimate the importance of the effects in the general population (one 

simple solution to this problem is to pay less attention to effect sizes that result from EG 

studies). Moreover, an EG design will preclude identification of non-linear effects (e.g., a 

curvilinear relationship between brain activation and task performance) that require 

examination of a full distribution of scores. Nevertheless, in cases where researchers are 

interested in a specific dimension of individual differences, have limited data collection 

resources, and detection power is more important than accurate characterization of effect 

size, EG samples may be preferable to random samples. 

 

                                                
1 It should noted that extreme groups designs are not equivalent to post-hoc dichotomization of participants 
based on a median split on scores of some variable of interest. The latter approach substantially reduces 
power and is almost never justified (Cohen, 1983; MacCallum, Zhang, Preacher, & Rucker, 2002; 
Preacher, Rucker, MacCallum, & Nicewander, 2005). The same is true for subsampling extreme groups 
from a larger sample  (e.g., performing a t-test comparing the lowest-scoring 10 participants to the highest-
scoring 10 participants drawn from a full sample of 60 participants). 
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Behavioral approaches 

As noted above, the variables used to predict individual differences in brain 

activation are selected opportunistically in most fMRI studies of WM / EC. Most 

commonly, they include simple performance measures of in-scanner behavioral 

performance such as response accuracy (Callicott et al., 1999; Gray, Chabris, & Braver, 

2003; Yarkoni, Gray, & Braver, submitted) or reaction time (Rypma, Berger, & 

D'Esposito, 2002; Rypma & D'Esposito, 1999; Schaefer et al., 2006; Wager, Sylvester et 

al., 2005). This approach is straightforward to implement (typically requiring no special 

consideration when designing an experiment) and can provide valuable insights into the 

relationship between task performance and activation increases or decreases. On the other 

hand, it does not allow researchers to differentiate state effects (some participants may 

perform better or worse during a given session for relatively uninteresting reasons) from 

trait effects (some participants consistently perform better than others). Moreover, the 

source of a particular brain-behavior correlation may be relatively unclear (e.g.,  is a 

positive relationship between dorsolateral prefrontal cortex [DLPFC] and verbal WM 

performance evidence of increased WM capacity – a trait effect – or of greater effort 

expenditure – a state effect?).    

To overcome such limitations, a small number of studies have related brain 

activation not only to in-scanner behavioral tasks but also to tasks or measures 

administered outside of the scanner. These include both standard ability-based measures 

of WM span or fluid intelligence (e.g., Geake & Hansen, 2005; Gray et al., 2003; Haier, 

White, & Alkire, 2003; Lee et al., 2006) and questionnaire-based personality measures of 

dimensions such as extraversion or neuroticism (Gray & Braver, 2002; Gray et al., 2005; 
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Kumari, ffytche, Williams, & Gray, 2004). For example, Yarkoni and colleagues recently 

used multiple psychometric measures of cognitive ability to demonstrate that activation 

in a region of medial posterior parietal cortex (PPC) during a 3-back WM task correlated 

significantly with fluid and spatial abilities but not with crystallized or verbal abilities 

(Yarkoni, Gray et al., submitted). This finding suggested that individuals who recruited 

mPPC activation more extensively (and performed more accurately) may have implicitly 

relied on a spatial strategy, despite the fact that the task itself had no overt spatial 

element. Such an inference would not be possible solely on the basis of correlations 

between brain activation and in-scanner performance, and requires the use of additional 

behavioral measures. 

Another compelling illustration of the utility of behavioral measures is found in 

studies investigating the relationship between behaviorally-measured WM capacity and 

the influence of dopaminergic drugs on in-scanner task performance and brain activation 

(S. E. Gibbs & D’Esposito, 2005; S. E. B. Gibbs & D’Esposito, 2006; Kimberg, Aguirre, 

Lease, & D'Esposito, 2001; Mattay et al., 2000; Mehta et al., 2000). At the group level, 

such studies have produced somewhat mixed results: administration of a dopamine-

enhancing agent may improve WM performance and/or decrease cortical activation 

(Kimberg et al., 2001; Mehta et al., 2000), produce no main effect (S. E. Gibbs & 

D’Esposito, 2005), or even impair performance (S. E. B. Gibbs & D’Esposito, 2006). 

Importantly, however, these mixed effects are moderated by individual differences in 

baseline WM capacity. Across several studies, low-capacity individuals consistently 

benefit more from dopaminergic drugs than high-capacity individuals  (S. E. Gibbs & 

D’Esposito, 2005; Kimberg, D'Esposito, & Farah, 1997; Mattay et al., 2000; Mehta et al., 
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2000); a finding that sheds considerable light on what would otherwise be a murky 

literature, and may have important practical implications for the use of such drugs. 

 

Statistical approaches 

Most individual differences analyses in fMRI studies consist of basic parametric 

or non-parametric correlation tests (e.g., Pearson's and Spearman's correlation 

coefficients, respectively). However, some studies have gone beyond simple correlational 

analyses and have applied more sophisticated analytical procedures common in 

psychometric studies of WM / EC to fMRI data. One such approach is statistical 

mediation analysis, which indicates whether a set of correlations between variables A, B, 

and C is consistent with a causal model postulating that the effect of variable A on 

variable C is at least partly explained through the mediating role of variable B 

(MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002). Several fMRI studies have 

used mediation analyses to identify brain regions that significantly mediate the 

relationship between two behavioral variables (e.g., Richeson et al., 2003; Tom, Fox, 

Trepel, & Poldrack, 2007; Yarkoni, Braver, Gray, & Green, 2005), though the number of 

applications to the domain of WM/EC remains limited. One study notable for its use of 

mediation analysis in a relatively large sample (n = 50) was reported by Gray and 

colleagues (Gray et al., 2003). They conducted an fMRI experiment in which participants 

completed a standard measure of fluid intelligence (Ravens' Advanced Progressive 

Matrices) and subsequently performed a challenging 3-back WM task in the scanner. The 

study's design enabled the authors to identify a region in left lateral prefrontal cortex 

(PFC) that statistically mediated the correlation between fluid intelligence and 3-back 
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response accuracy—a stronger inference than would be afforded simply by observing a 

correlation between brain activation and task performance. 

Another statistical technique widely used in psychometric WM/EC research is 

structural equation modeling (SEM; Bollen, 1989; Kline, 1998), which enables 

researchers to estimate, evaluate, and develop causal models of the relationships between 

variables (Friedman & Miyake, 2004; Kane et al., 2004). To date, cognitive 

neuroscientists interested in WM / EC have used SEM primarily to model interactions 

between different brain regions and/or WM task conditions (for review, see Schlösser, 

Wagner, & Sauer, 2006), and only secondarily to relate individual differences measures 

of WM to brain activation (but see, e.g., Glabus et al., 2003; Kondo et al., 2004). 

However, in principle, a unified SEM framework could integrate both behavioral and 

neural data—e.g., by mapping latent variables derived from behavioral measures onto 

distinct brain networks (Kim, Zhu, Chang, Bentler, & Ernst, 2007). Of course, such 

efforts are likely to be hampered by considerable practical obstacles—e.g., the need for 

large sample sizes, multiple in-scanner sessions, etc.—so SEM approaches on the scale of 

existing behavioral analyses (Conway, Cowan, Bunting, Therriault, & Minkoff, 2002; 

Engle, Tuholski, Laughlin, & Conway, 1999; Kane et al., 2004) may not be viable. 

An alternative multivariate technique used in a number of WM/EC studies 

involving individual differences (e.g., Caplan, McIntosh, & De Rosa, 2007; Della-

Maggiore et al., 2000; Grady et al., 1998) is Partial Least Squares (PLS; McIntosh, 

Bookstein, Haxby, & Grady, 1996; McIntosh & Lobaugh, 2004). Like SEM, PLS focuses 

on network-level activation rather than individual voxels or brain regions; however, 

unlike other multivariate approaches, PLS seeks to identify patterns of brain activation 



 10 

that covary maximally with a reference set of variables (e.g., an experimental design 

matrix or a set of individual difference variables). For example, Caplan and colleagues 

recently used PLS to identify two distributed brain networks that independently predicted 

individual differences in the successful resolution of proactive interference (Caplan et al., 

2007). The use of a multivariate approach allowed the authors to model brain activation 

at the level of functional networks rather than isolated regions, an approach that would 

not have been possible using conventional univariate methods. However, PLS remains 

susceptible to many of the limitations of SEM (e.g., the fundamental need for a large 

sample size when focusing primarily on individual differences). 

 

2. The relationship between within-subject and individual differences analyses 

How are individual differences analyses conceptually related to more common 

within-subject analyses (e.g., paired t-tests)? One common intuition is that the results of 

the two types of analyses should tend to converge. That is, regions in which an 

experimental manipulation elicits greater activation on a within-subject level should also 

show reliable between-subjects variation, such that activation is greater in individuals 

who capably perform the task than in individuals who do not. There is some empirical 

support for this idea; for example, DLPFC activation reliably increases as a function of 

WM load (Braver et al., 1997; Callicott et al., 1999), and several studies have found a 

positive correlation between DLPFC activation and higher WM capacity or greater fluid 

intelligence (Gray et al., 2003; Lee et al., 2006).  On the other hand, there are arguably 

more instances in the literature of within-subject and between-subjects analyses 

producing effects in conceptually opposing directions. For example, older adults often 
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show greater prefrontal activation than younger adults when performing effortful 

cognitive tasks despite exhibiting a poorer level of behavioral performance (Cabeza, 

Anderson, Locantore, & McIntosh, 2002; Reuter-Lorenz, 2002). In young adults, many 

studies have similarly found greater activation in regions such as lateral PFC and anterior 

cingulate cortex (ACC) in participants who perform poorly than those who perform well. 

The ACC is thought to be involved in monitoring for conflict, and in several studies, 

individuals who perform more poorly on tasks involving cognitive conflict have shown 

greater ACC activation (Bunge, Ochsner, Desmond, Glover, & Gabrieli, 2001; Hester, 

Fassbender, & Garavan, 2004; MacDonald, Cohen, Stenger, & Carter, 2000; Wager, 

Sylvester et al., 2005). Left ventrolateral PFC (VLPFC) is thought to be involved in 

resolving proactive interference (Jonides & Nee, 2006), yet individuals who are good at 

overcoming proactive interference show less VLPFC activation than individuals who are 

not (Nee, Jonides, & Berman, 2007). 

There is often a plausible explanation for the opposing directions of within-

subject and individual differences effects. For example, the observation that susceptibility 

to interference during cognitive conflict-inducing tasks correlates positively with ACC 

activation might be attributed to the fact the ACC tracks the amount of input conflict 

rather than the degree to which its resolution is successful (e.g., Wager, Sylvester et al., 

2005). More generally, frontoparietal hyperactivations in older adults and poorly-

performing young adults are often attributed to compensatory processing or differences in 

neural efficiency (Gray et al., 2005; Haier et al., 1992; Larson et al., 1995; Rypma et al., 

2006). That is, older adults and inefficient young adults are thought to require greater 

effort expenditure to achieve the same level of performance as highly-performing young 
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adults, leading to relative increases in frontoparietal activation. This interpretation affords 

easy reconciliation of the apparent contradiction between individual differences and 

within-subjects effects.  However, the explanatory power of this perspective is limited, as 

it provides no indication as to why individuals might vary considerably in cognitive 

efficiency, or why correlations between frontoparietal activation and cognitive 

performance are positive in some studies but negative in others. 

An additional consideration is that correlations between mean reaction time (RT), 

a primary measure of behavioral performance, and brain activation may simply reflect 

basic properties of the blood oxygen level dependent (BOLD) signal detected by fMRI. 

In a recent multi-study analysis, we demonstrated that trial-by-trial differences in reaction 

time correlate positively with lateral PFC and MFC activation in a task-independent 

manner (Yarkoni, Barch, Gray, Conturo, & Braver, submitted). The explanation accorded 

to this finding was that frontal increases on slower trials reflect linear summation of the 

hemodynamic response over time (cf. Burock, Buckner, Woldorff, Rosen, & Dale, 1998; 

Dale & Buckner, 1997). While we did not report individual differences analyses of RT, a 

temporal summation account should hold both within and across individuals. That is, 

individuals who sustain attention to task-relevant information for a longer period of time 

may show a greater summation of the BOLD signal in frontal regions, irrespective of 

whether that time is used efficiently or not. Given this possibility, caution should 

probably be exercised when using individual differences in RT as a predictor of brain 

activity. A preferable approach is to rely on response accuracy as a measure of 

performance while statistically controlling for individual differences in RT. 

Unfortunately, this approach is not viable for many tasks in which RT is the primary 
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measure of performance. Nevertheless, given that it is possible to include RT as a trial-

by-trial covariate in fMRI analyses, effectively controlling for this source of variance, it 

might be useful in such studies to test how the inclusion of an RT covariate influences 

individual difference effects.  

 

Spatial dissociations 

Discrepancies between within-subjects and individual differences analyses need 

not manifest as conceptually opposing effects within the same brain regions. Often, 

individual differences analyses simply fail to reveal any significant effects in regions that 

show a robust within-subject effect. In such cases, lack of statistical power, which we 

discuss at length in the next section, is a likely culprit, because individual differences 

analyses almost invariably have considerably lower power than within-subjects effects. 

Alternatively, individual differences analyses and within-subjects analyses may both 

reveal significant effects, but in spatially-dissociable regions (Bunge et al., 2001; Locke 

& Braver, 2008; Yarkoni, Gray et al., submitted). For example, in a recent large-sample 

(n = 94) fMRI study using a 3-back WM task, we found a dissociation between 

frontoparietal regions canonically implicated in cognitive control and a region of medial 

posterior parietal cortex (mPPC) not usually implicated in WM / EC (Yarkoni, Gray et 

al., submitted). Frontoparietal regions showed strong within-subjects effects of trial 

difficulty but inconsistent associations with response accuracy either within or across 

individuals. In contrast, mPPC activation showed relatively weak effects of trial difficulty 

but robust associations with response accuracy both within and across subjects. 
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How should spatial dissociations between within-subjects and individual 

differences effects be interpreted? On the one hand, such findings may seem 

counterintuitive, because regions that do not appear to be recruited on average during 

performance of a task may seem like unlikely candidates for individual differences 

effects. Indeed, some evidence suggests that the BOLD signal tends to be more reliable 

across individuals in regions that show strong within-subjects effects than in those that do 

not (Aron, Gluck, & Poldrack, 2006; Specht, Willmes, Shah, & Jaencke, 2003). On the 

other hand, there is no logical necessity for within-subject and between-subject sources of 

variance to produce converging results. Indeed, from a statistical standpoint, within-

subject and between-subject effects are in tension, because between-subject variance 

counts as error in within-subject analyses, and vice versa. This observation raises 

concerns that one of the most common individual differences approaches in fMRI 

studies—namely, identifying regions-of-interest (ROIs) based on within-subject analyses 

and subsequently testing them for correlational effects—may actually reduce the 

probability of detecting significant effects. Omura and colleagues recently advocated 

precisely the opposite approach, suggesting that researchers interested in correlational 

effects should focus their search on regions in which between-subject variance is largest 

relative to within-subject variance (Omura, Aron, & Canli, 2005). However, the viability 

of the latter approach depends on the assumption that the signal in regions with a high 

BS:WS variance ratio is reliable. If, as the studies cited above suggest, reliability tends to 

be highest in regions that show the strongest within-subject effects, there would be little 

utility in such an approach. Additional empirical studies are needed in order clarify the 

issue.  
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Integrative interpretation of within-subject and individual differences results 

Although directional or spatial dissociations between within-subject and 

individual differences analyses may be difficult to interpret, they can potentially also 

serve as a powerful tool for characterizing the functional role of different brain regions. 

Within-subject and individual differences analyses reflect independent sources of 

variance, are sensitive to different kinds of processes, and afford qualitatively different 

conclusions. We focus here on two kinds of inferences afforded when combining the two 

forms of analysis. First, within-subject analyses are, by definition, most sensitive to 

processes that are consistent across all participants, including those that are necessary for 

performing a task. For example, the fact that the "task-positive" frontoparietal network 

(Fox et al., 2005) is activated during virtually all tasks involving cognitive effort 

(Buchsbaum, Greer, Chang, & Berman, 2005; Duncan & Owen, 2000; Owen, McMillan, 

Laird, & Bullmore, 2005; Wager, Jonides, & Reading, 2004) likely indicates that an 

intact frontoparietal network is necessary in order to maintain a minimal level of goal-

directed attention; however, this network may play little or no role in supporting many of 

the task-specific processes that distinguish one effortful cognitive task from another. In 

contrast, variability in performance across individuals is most likely to reflect those 

processes that can be recruited in varying degrees to produce incremental gains in 

performance. These include both processes that can vary quantitatively in strength (e.g., 

the amount of effort one exerts during the task) as well as qualitatively different strategies 

that may vary across individuals (e.g., in an N-back task, participants may use either 
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familiarity-based or proactive strategies; Braver, Gray, & Burgess, 2007; Kane, Conway, 

Miura, & Colflesh, 2007). 

A second and related point is that combining standard subtractive contrasts of 

different experimental conditions with correlational analyses of individual differences 

can help distinguish neural processes that are causally involved in modulating overt 

behavior from those that are epiphenomenal with respect to overt behavior and may even 

result from behavioral changes. A common strategy in fMRI studies is to demonstrate 

that an experimental manipulation elicits changes in both overt behavior and brain 

activation, and to then causally attribute the former to the latter. For example, the view 

that the left inferior frontal gyrus plays a role in resisting cognitive interference during 

goal-directed processing is based largely on observations that activation in left IFG 

increases in proportion to the amount of proactive interference present in the environment 

(for review, see Jonides & Nee, 2006). Such evidence cannot conclusively rule out the 

possibility that left IFG activation tracks some epiphenomenal cognitive process that 

covaries with the amount of interference present on a trial but does not itself influence the 

behavioral response (e.g., familiarity of the interfering stimulus). The causal inference is 

more strongly supported if it can be shown that changes in IFG activation correlate in 

meaningful ways with individual differences in resistance to proactive interference (e.g., 

Gray et al., 2003; Nee et al., 2007). 

Of course, brain-behavior relationships can be investigated not only at the level of 

individual differences, but also within-subject, using trial-by-trial differences in behavior 

to predict corresponding changes in brain activation. For example, if left IFG is involved 

in resolving proactive interference, it should presumably show greater activation on trials 
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when participants successfully resist interference than on trials on which they succumb to 

interference. Integrative approaches that model brain-behavior relationships both within 

and across subjects should be encouraged, because they can provide even more 

sophisticated inferences. For example, significant correlations with performance across 

subjects but not within subjects may indicate that individuals are using qualitatively 

different strategies that are relatively stable within-session. In a recent fMRI study of 

decision-making under uncertainty in which participants repeatedly chose between high-

probability small rewards and low-probability large rewards (e.g., 90% of 100 points 

versus 25% chance of 400 points), we found that activation in PPC correlated strongly 

with "rational" choice (i.e., selection of the higher expected value) across individuals but 

not on a trial-by-trial basis (Yarkoni & Braver, 2008). This finding likely reflects the fact 

that participants who explicitly computed the expected value of each reward—an ability 

that depends on mental arithmetic operations supported by PPC (Dehaene, Piazza, Pinel, 

& Cohen, 2005)—were likely to make very few suboptimal choices, whereas those who 

used heuristic strategies (e.g., selecting the higher-probability reward) did not compute 

expected value and hence did not activate PPC. The interpretation would have been very 

different had the PPC covaried with rational choice within subjects but not across 

subjects. In the latter case, a more plausible interpretation would be that participants 

tended to all use similar computational strategies, and that decision-making performance 

was largely a function of trial-specific variables (e.g., the difficulty of the trial, random 

fluctuations in internal noise levels,  etc.). 

In sum, the relationship between within-subject and individual differences 

analyses is complex, and the two kinds of analyses should not be viewed simply as two 
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sides of the same coin. Individual differences analyses offer researchers more than just a 

second shot at detecting a hypothesized effect. An integrative approach that complements 

standard experimental contrasts with individual differences analyses as well as trial-by-

trial correlations with behavior can potentially provide researchers with sophisticated and 

powerful insights into brain-behavior relationships that would be difficult to achieve by 

other means. 

 

3.  Methodological and statistical considerations 
 
Power and sample size 

A paramount consideration when conducting virtually any kind of psychological 

experiment is statistical power, or the probability that a statistical test will produce a 

significant result in cases where the tested effect is indeed present in the population. 

Power is a direct function of three parameters: effect size, statistical threshold, and the 

sensitivity of the data, which in turn depends on measurement reliability and sample size. 

Measurement reliability is discussed in greater detail in the next section; for present 

purposes we focus on the role of sample size, as it is the parameter most easily 

manipulated by investigators, and arguably the one that presents neuroimaging 

investigators with the greatest problems. 

 

fMRI studies of individual differences are consistently underpowered 

 The importance of ensuring that a study has adequate statistical power should be 

readily apparent. If power is simply the ability to detect the effect one is looking for, why 

bother conducting a study that has little chance of producing significant results? Yet 
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failures to consider power prior to conducting experimental investigations are 

surprisingly common in the psychological sciences, as a result of which power levels are 

often dismally low (for recent discussion, see Maxwell, 2004).  

 To date, relatively few studies have explored issues related to statistical power in 

functional neuroimaging studies. The majority of such studies have focused on power-

related issues in the context of fMRI design choices–e.g., the trade-off between the ability 

to detect a specific hemodynamic response function and the ability to successfully 

estimate the shape of that response (e.g., Friston, Holmes, Poline, Price, & Frith, 1996; 

Liu, Frank, Wong, & Buxton, 2001). Only a handful of studies have attempted to 

determine the number of subjects required in order to ensure an adequate level of power 

in mixed-model fMRI analyses (Desmond & Glover, 2002; Mumford & Nichols, 2008; 

Murphy & Garavan, 2004; Thirion et al., 2007), and these studies have focused 

exclusively on within-subject analyses (e.g., paired t-tests contrasting activation in two 

experimental conditions). No study we know of has attempted to generate power 

estimates for individual differences analyses in fMRI studies. This absence is 

problematic, because individual differences analyses have lower power to detect effects 

than within-subject analyses (assuming that effect size, statistical threshold, and sample 

size are held constant), and one cannot simply generalize recommendations made 

specifically for within-subject analyses to the domain of individual differences. 

To provide estimates of the sample sizes needed to ensure adequate statistical 

power in individual differences fMRI analyses, we generated power curves for a standard 

correlation test (Pearson’s r) using parameters that are realistic for fMRI studies (Figure 

1). For comparison purposes, equivalent curves are presented for a paired t-test analysis. 
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Table 1 provides point estimates of power level for these two statistical tests at several 

different effect sizes, sample sizes, and statistical significance thresholds. The figure and 

table support two main conclusions. First, correlational analyses have substantially lower 

power to detect effects than one-sample t-tests under realistic circumstances. For 

example, a one-sample t-test has 92% power to detect a 'large' effect size of  d = .8 in a 

sample of 20 subjects at p < .05. Yet a d of .8 is equivalent to an r of approximately 0.372, 

and power to detect a correlation of this size at p < .05 in the same sample is only 35%. 

Achieving a conventionally adequate power level of .8 for this correlational test would 

require a sample size of 55—more than double that recommended by power studies that 

have focused on within-subject analyses (typically about n = 25; Desmond & Glover, 

2002; Murphy & Garavan, 2004; Thirion et al., 2007). 

These analyses make clear that the majority of fMRI analyses of individual 

differences have very little power to detect all but the most powerful correlational effects. 

A cursory review of fMRI studies of individual differences in WM and executive control 

suggests that sample sizes of approximately 15-20 are the norm in previous research. 

While some studies have used much larger samples (Gray et al., 2003; Hester et al., 2004; 

Schaefer et al., 2006; Yarkoni, Gray et al., submitted), others have reported results based 

on samples as small as 6-9 individuals (Callicott et al., 1999; Fiebach, Rissman, & 

D'Esposito, 2006; Mattay et al., 2000; Rypma & D'Esposito, 1999). Moreover, many 

studies that employed individual differences analyses have relied at least in part on 

whole-brain analyses, necessitating conservative statistical thresholds on the order of p < 

.001 or less. When one considers that a correlation test has only 12% power to detect 

                                                
2 Cohen's (1988, p. 23) formula provides that 4/ 2 +≈ ddr . 
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even a 'large' correlation of .5 at p < .001 in a sample size of n = 20, it becomes clear that 

the typical fMRI study of individual differences in WM has little hope of detecting many, 

if not most, meaningful effects3. Thus, there are strong incentives for researchers to use 

larger samples and theoretically-driven analyses that allow ROI-level hypotheses to be 

tested at more liberal thresholds. 

  

Small samples  and effect size inflation 

An underappreciated but important consequence of using small sample sizes is 

that the effect size of significant results may be grossly inflated (Bradley, Smith, & 

Stoica, 2002; Muncer, Craigie, & Holmes, 2003). When sample sizes are small enough 

and/or population effects weak enough, the critical value for a statistical test may be 

much higher than the actual population effect size, so the only way to detect a significant 

effect is to capitalize on chance. Failure to consider the possibility of such inflation can 

then have a number of deleterious effects. First, researchers may grossly overestimate the 

importance of their findings. Second, the combination of inflated effect sizes and low 

statistical power may lead researchers to erroneously conclude not only that observed 

effects are very strong, but also that they are highly selective. Suppose for example that 

performance on a WM task shows a uniform correlation of .3 with activation across the 

entire brain in the general population. In a sample of 20 subjects, power to detect a 

significant correlation for any given observation is only 1.4% at a whole-brain α-level of 

.001. Thus, in a brain comprised of 100,000 voxels, a whole-brain analysis will detect 

only ~ 1,400 significant voxels on average—and the mean significant r value in these 

                                                
3 Note that values of r >= 0.5 are extremely rare in most areas of psychology; see Meyer et al. (2001) for a 
review indicating that most effects across broad domains of psychology and medicine are in the range of .1 
- .3. 
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voxels will be highly inflated, at approximately .734. An uncritical researcher examining 

the thresholded output from a statistical test could then easily conclude that task 

performance is very strongly correlated with activation in highly selective brain regions, 

when in fact the actual population effect is much weaker and shows no spatial selectivity 

whatsoever. 

Finally, inflated effect sizes may lead to misallocation of considerable resources 

as replications and extensions of a reported “large” effect are unsuccessfully attempted. 

As studies accumulate, the literature addressing a given research question may come to 

appear full of "mixed results", with some studies detecting an effect and others failing to, 

or detecting effects of very different sizes. If one allows that initial reports of a 

correlational effects sometimes grossly overestimate the size of the effect, it should not 

be surprising if subsequent studies with similar or even larger sample sizes often fail to 

replicate the original effect, or successfully replicate the effect with a much smaller effect 

size. Consider, for example, two recent studies by Gray and colleagues (Gray & Braver, 

2002; Gray et al., 2005). In a first study, the authors identified strong correlations (.63 - 

.84) between participants' BAS scores (measures of behavioral approach tendencies, 

respectively) and caudal ACC activation in several WM conditions (Gray & Braver, 

2002). Yet in a follow-up study (Gray et al., 2005), with a much larger sample size (N > 

50),  the same correlations were at a much lower level (.28 - .37).  Had a smaller sample 

size been used in the follow-up study, even a partial replication would have been 

exceedingly unlikely, and the authors might then have concluded that the initial set of 

findings were false positives, or reflected some unknown experimental difference. Yet 

the seeming discrepancy is easily explained by noting that effect sizes in the first 
                                                
4 For the sake of simplicity, this example assumes that each voxel represents an independent observation. 



 23 

experiment were likely inflated due to small sample size (n = 14). In fact, the correlation 

achieved in the follow-up study was well within the confidence intervals of the effect in 

the original study, but led to a qualitatively different assessment regarding the importance 

of the personality effect. 

In sum, a realistic assessment of power in fMRI studies of individual differences 

can help researchers avoid undue excitement about the strength and selectivity of 

observed effects, can provide a realistic assessment of the likelihood of replicating 

previous effects, and may help explain away many instances of seemingly conflicting 

findings. 

 

Data peeking and Type I error inflation 

A final issue related to the use of small samples in fMRI studies concerns the 

tendency of fMRI researchers to "peek" at the data—that is, to periodically reanalyze the 

data every time one or more subjects are added to the sample. Because fMRI data 

collection and processing is laborious and extremely expensive, the practice of data 

peeking may seem to make good practical sense. If a targeted effect is already present in 

a small sample, why bother increasing the sample size at great expense?  

While the act of inspecting the data is not harmful in and of itself, the decision to 

terminate data collection as soon as significant results are obtained is rarely if ever 

defensible. Early termination can lead to substantial inflation of Type I error, because a 

researcher may erroneously accept a spurious effect that would have gone away if data 

collection had continued (for discussion of this issue, see Armitage, McPherson, & Rowe, 

1969; Pocock, 2006; Strube, 2006; Wagenmakers, 2007). Figure 2 plots the Type I error 
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rate associated with data peeking for common sample sizes and statistical thresholds (cf. 

Strube, 2006). Inflation of Type I error is considerable in virtually all cases. For example, 

given a maximum sample size of 30 and an α-level of .05, the probability of falsely 

detecting a significant effect is over 17% if peeking begins after 10 subjects, the 

correlation is computed every time a subject is added to the sample, and one assumes that 

the study terminates as soon as a significant effect is found. At a conventional whole-

brain threshold of p < .001, the corresponding Type I error rate for the same sample is 

approximately 0.5%—still low in absolute terms, but a five-fold increase over the 

nominal rate. If data peeking occurs at less frequent intervals, the inflation factor 

decreases; however, it remains unacceptably high even at a peeking interval of 5 subjects 

(Type I error rate = ~ 13.4% at p < .05 and ~ 0.4% at p < .001). 

 

Practical recommendations 

Practically speaking, what can researchers do to address the above power-related 

concerns? We make six recommendations: 

1. Use larger samples. Whenever possible, the simplest and best cure for a lack of 

power is to increase the sample size. Use of small samples is often justified 

anecdotally by noting that effect sizes in fMRI research are very large, making their 

detection relatively easy. However, as the power curves and Monte Carlo simulations 

presented above show, there is reason to doubt such assertions. The fact that small-

sample studies routinely obtain correlations of .7 - .9 almost certainly reflects massive 

effect size inflation rather than unusually large brain-behavior correlations in the 

population. Simply put, researchers who are serious about investigating individual 
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differences with fMRI must be willing to collect larger samples. Based on the results 

presented here, we would suggest n=40 as a reasonable lower limit for a study 

focused primarily on individual differences analyses. This sample size is still sub-

optimal from a power standpoint, but may represent an acceptable trade-off between 

the need to ensure adequate power while limiting data collection costs. However, this 

generalization should be taken with a grain of salt, and is no substitute for study-

specific power calculations. 

2. Perform (and report) power calculations. There is little reason not to conduct power 

calculations prior to beginning fMRI data collection. Many power analysis tools are 

freely available either as stand-alone applications or as add-ons to popular statistics 

packages5, and several websites provide instantaneous power calculations for various 

statistical procedures. The time investment required to perform a series of power 

calculations is negligible and the potential pitfalls of failing to do so are enormous. 

There is no good reason we can see for failing to report power calculations whenever 

individual differences analyses are reported in fMRI studies. Reviewers and editors 

should similarly be encouraged to request or require authors to report power 

calculations when none are provided. 

3. Test a priori hypotheses whenever possible. While whole-brain analyses are an 

important complement to any set of focused regional analyses, the use of ROI-level 

tests allows correlations to be tested at much more liberal statistical thresholds (e.g., p 

< .05 instead of p < .001). Of course, testing too many hypotheses at a regional level 

can introduce its own multiple-comparisons problem, and the privileged status of 

                                                
5 We used R and the add-on pwr library to perform all of the calculations and simulations reported in this 
chapter. 
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theoretical hypotheses should not be abused by testing several dozen regions without 

further controlling the Type I error rate. 

4. Don't base sample size decisions on inspection of provisional data. While some 

amount of data peeking for quality assurance purposes may be inevitable in fMRI 

studies, researchers should peek only to ensure to adequacy of the fMRI signal itself, 

and not the adequacy of the results in relation to the hypothesis. Researchers should 

not cease collecting fMRI data once sufficiently interesting results are obtained, nor 

should they chase a marginal correlation with additional subjects until it becomes 

significant. The recommended approach is to select a sample size based on a priori 

power calculations and stick to it. Deviating from the chosen sample size based on 

preliminary results will result in considerable inflation of Type I error. 

 

5. Avoid attributing null results or replication failures to experimental factors without 

good cause. It is often tempting to attribute a replication failure to some minute 

difference between the original and present studies. However, unless sample size is 

very large and/or the expected effects are extremely strong, by far the most plausible 

explanations for a null result in an individual differences fMRI analysis are that (a) 

the present null result represents a Type II error or (b) the original result represented a 

Type I error. 

6. Pay little attention to the apparent strength or spatial selectivity of correlational 

effects. Small sample sizes may dramatically inflate the size of significant effects, and 

low power tends to induce an illusion of spatial selectivity. Consequently, a good deal 
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of skepticism should be applied when interpreting small-sample size correlational 

results that appear to be very strong and highly selective. 

 
Reliability 
 
 Reliability refers to the ability of an instrument or measure to produce consistent 

results when tested under similar conditions. Measurement reliability is a paramount 

concern in virtually all empirical investigations because the reliability of a measure sets 

an upper bound on the extent to which its variance is available to correlate with other 

measures (Cohen, West, Aiken, & Cohen, 2002). The detectable correlation between the 

observed scores of two variables is formally equivalent to the square root of the product 

of the two reliabilities multiplied by the true population correlation. Attenuation of 

effects due to measurement unreliability may have few practical consequences in cases 

where effects and/or sample sizes are very large, because, so long as an effect is 

detectable and estimates of measurement reliability are available, it is always possible to 

correct for unreliability and estimate the true population effect size. However, as the 

above discussion of power should make clear, fMRI studies rarely occupy this privileged 

niche. Given the small sample sizes typical of fMRI studies, a difference between 

population-level and sample-level effect sizes could easily amount to the difference 

between a significant effect and a null result. Thus, the viability of individual differences 

analyses in fMRI studies depends critically on ensuring that the measures used—whether 

of behavior or brain function—are sufficiently reliable. 

 

Behavioral measures 
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By convention, reliability coefficients of .8 are considered adequate in most 

domains of psychological research, and coefficients of .9 or more are generally 

considered high. Given that most fMRI analyses of individual differences in WM and 

executive control use behavioral measures (e.g, task performance or cognitive ability 

measures) to predict brain activity, one might expect a similar convention to hold in the 

fMRI literature. Unfortunately, reliability coefficients for behavioral measures are rarely 

reported in fMRI studies. This absence is of little concern in studies that use standard 

measures that have been psychometrically validated—e.g., the Ravens' Advanced 

Progressive Matrices or Engle and colleagues' version of the Operation Span task 

(Unsworth, Heitz, Schrock, & Engle, 2005)—because it is unlikely that the reliability of 

such measures will depart radically from published norms for any given study. However, 

many fMRI studies use non-standard individual differences measures as predictors of 

brain activation, e.g., measures of RT or response accuracy derived from 

idiosyncratically-implemented or entirely novel cognitive tasks. In the latter case, it is 

important to supplement any reported correlational results with an estimate of the 

reliability of the measures involved. Given that reliability can be easily estimated in a 

variety of ways (e.g., virtually all major statistical packages can easily compute 

Cronbach's α, the most common measure of internal consistency), researchers should be 

encouraged to report a coefficient of reliability for all individual differences measures 

used to predict brain activity—a step only a few fMRI studies have taken (e.g., Gillath, 

Bunge, Shaver, Wendelken, & Mikulincer, 2005; Heinz et al., 2004). 

 

Neuroimaging measures 
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In contrast to behavioral measures, it is not quite as straightforward for 

researchers to estimate the reliability of the BOLD signal. Subjects are typically tested on 

only one occasion in most studies, and measurements at different voxels or scanning 

frames cannot be thought of as items of a measure in the same sense as questions on a 

questionnaire. The most viable route to determining reliability given such constraints is to 

compute some form of split-half reliability coefficient, e.g., by comparing activation 

across different runs within the same session, or by randomly coding events of a single 

type using two different variables. While this approach is admittedly time-consuming, 

and produces results that may be difficult to interpret and report because reliability 

coefficients may vary considerably from voxel to voxel and experimental condition to 

experimental condition, we believe the potential benefits are sufficiently great to warrant 

wider adoption. 

General estimates of the reliability of fMRI data can be gleaned from a number of 

studies that have explicitly sought to quantify the reliability of the BOLD signal6. 

Overall, such studies provide a mixed picture. On the positive side, several studies that 

assessed test-retest reliability at varying intervals reported adequate or even high 

reliability coefficients across a range of experimental tasks (e.g., Aron et al., 2006; 

Fernandez et al., 2003; Specht et al., 2003). For example, Aron and colleagues (2006) 

scanned 8 participants who performed a classification learning task on two separate 

                                                
6 Note that the term reliability is used here to refer specifically to the stability of the rank order of BOLD 
activation across subjects. That is, the BOLD signal can be considered reliable if individuals who show 
high levels of activation when scanned on one occasion also show high levels of activation when scanned 
on another occasion under the same conditions. The term reliability is also often used to refer to the 
replicability or reproducibility of fMRI results at the group level—e.g., deeming the BOLD signal reliable 
if approximately the same pattern of group-level activation can be replicated across different samples, 
scanners, institutions, task variants, etc. Although these two senses of reliability are interrelated, they are 
not equivalent. We focus here only on the former sense, as it is the one relevant for individual differences 
analyses. 
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occasions one year apart and found intra-class correlation coefficients (ICCs) greater than 

.8 in many voxels that were activated at the group level. Such results clearly demonstrate 

that it is possible to measure brain activation reliably with fMRI; however, there is no 

guarantee that this conclusion will generalize across different samples, designs, scanners, 

and experimental contrasts. 

Indeed, other studies have provided decidedly less optimistic results (Johnstone et 

al., 2005; Manoach et al., 2001; Manuck, Brown, Forbes, & Hariri, 2007). For example, 

Johnstone and colleagues (2005) investigated the test-retest reliability of amygdala 

reactivity to neutral and fearful faces across 3 testing occasions spanning 8 weeks. ICCs 

peaked around .8 in the left amygdala, but were near zero in the right amygdala for 

several contrasts. Manuck and colleagues (2007) conducted a similar study but with a 

longer (one year) test-retest interval. In contrast to Johnstone et al.'s results, Manuck et al. 

found moderate stability in the right amygdala (r = .59) but no stability in the left 

amygdala (r = -.08). Note that low test-retest reliability does not necessarily imply low 

reliability in general, as test-retest reliability estimates can differ considerably from 

estimates of internal consistency. That is, it is possible for regional brain activation to 

show adequate reliability on one occasion yet fail to show consistency over time due to 

the systematic influence of other factors (e.g., participants’ mood). Nonetheless, the 

complete absence of temporal consistency in some analyses is cause for concern, and 

raises the worrisome possibility that correlational effects may be impossible to detect in 

some regions and experiments7. Moreover, even in studies that have identified highly 

                                                
7 It may also be that these low test-retest correlations reflect a genuine lack of stable individual differences. 
However,  the strong hemispheric asymmetry and conflicting findings across studies seem to weigh against 
such a conclusion, as does the fact that numerous studies have detected individual differences effects in the 
amygdala using similar contrasts (Canli, Sivers, Whitfield, Gotlib, & Gabrieli, 2002; Canli et al., 2001). 
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reliable activations, the locus of reliable signal tends to be circumscribed to those regions 

that show significant group-level involvement in the task (Aron et al., 2006; Specht et al., 

2003), potentially limiting the scope of individual differences analyses even further. 

 

Increasing reliability 

Considerable work remains to be done in order to better understand the conditions 

that affect the reliability of individual differences in the BOLD signal. In the interim, 

several steps can be taken in the hopes of increasing reliability. First, researchers should 

take care to use reliable behavioral measures as predictors of brain activity, and should 

report reliability coefficients for such measures whenever possible. Second, in cases 

where the process is not too laborious, researchers can obtain rough estimates of BOLD 

signal reliability by conducting split-half analyses as noted above. Third, reliability can 

be increased by employing data reduction or latent variable techniques such as principal 

components analysis (PCA) or SEM that "triangulate" on reliable variance. For example, 

factor analytic techniques can be used to extract a small number of latent activation 

variables from a large number of ROIs or behavioral variables (Badre, Poldrack, Paré-

Blagoev, Insler, & Wagner, 2005; Peterson et al., 1999; Wager, Sylvester et al., 2005; 

Yarkoni, Gray et al., submitted) or from a single ROI across different contrasts (Yarkoni, 

Gray et al., submitted). Such factors, which reflect only common (and therefore, reliable) 

variance, are more likely to correlate with behavioral variables, other things being equal. 

(A secondary benefit of such an approach is the reduction in the number of statistical 

comparisons tested.) 
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Finally, researchers who are specifically interested in individual differences and 

are willing to sacrifice some power to detect within-subject effects may be able to 

increase the reliability of brain activation measures by deliberately selecting experimental 

tasks that produce highly variable performance across individuals. For example, if one's 

goal is to investigate the neural correlates of individual differences in WM capacity, 

maximal reliability is likely to be attained when the experimental task used in the scanner 

is relatively difficult, and a wide range of performance levels is observed. Conversely, 

when a task is relatively easy and performance is near ceiling levels for most participants, 

as is common in many fMRI studies of WM, activation in regions associated with task 

performance may be relatively unreliable because the amount of effort a participant 

invests may have little influence on their performance level  (i.e., one could invest a little 

effort or a lot, and the behavioral data would not reflect this variability).  

 

Outliers 

One of the most important topics in statistical research methodology concerns 

how researchers should identify and deal with outliers—extreme observations that fall 

outside the expected bounds of a distribution. In addition to standard reasons for 

worrying about outliers—that they skew the distribution, inflate the variance, and can 

bias results—there are at least three additional reasons why outliers may present 

particular cause for concern in the domain of neuroimaging. First, neuroimaging sample 

sizes are heavily constrained by the high cost of data collection. Thus, the most general 

strategy for reducing outlier influence—increasing sample size—is often not viable. 

Second, neuroimaging datasets are highly susceptible to various forms of artifact, 
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potentially resulting in a disproportionate number of outliers (Ojemann et al., 1997; 

Wager, Keller, Lacey, & Jonides, 2005). Third, the large number of statistical 

comparisons performed in typical neuroimaging analyses can easily result in a failure to 

detect outliers, since it is not possible to visually inspect a scatter plot for each 

comparison of interest as behavioral researchers commonly do. When reporting 

significant correlations in specific brain regions, researchers often display the 

corresponding scatter plots and explicitly discuss the potential role of outliers if they are 

present. This approach works well for voxels or regions that a statistical test or prior 

hypothesis have indicated are worth examining, but is of no help in cases where a real 

correlation exists but is obscured by an outlier that biases the regression coefficient away 

from significance and consequently fails to be detected. The need to preemptively 

identify and control for the influence of outliers therefore calls for the use of procedures 

other than the standard parametric tests. 

 

Identifying outliers 

Numerous methods exist for visually or quantitatively identifying outliers (for review, see 

Barnett & Lewis, 1994; Iglewicz & Hoaglin, 1993). In practice, the most common 

approaches are to either label observations as outliers based on a semi-arbitrary pre-

specified criterion (e.g., falling more than N standard deviations from the mean) or to 

employ the boxplot method, which identifies as outliers any observations that fall a 

certain distance outside the interquartile range (McGill, Tukey, & Larsen, 1978; Tukey, 

1977). These methods are easy to apply, but are relatively unprincipled and do not 

provide guidance concerning how to deal with outliers once they have been identified. A 
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common approach in many areas of psychology (e.g analyses of RT in cognitive 

psychology; for review, see Ratcliff, 1993) is to simply remove all observations labeled 

as outliers from analysis. However, this approach may be inadvisable for individual 

differences analyses in neuroimaging studies where sample sizes are small and power is 

already low to begin with; moreover, dropping outliers arbitrarily is liable to bias 

resulting regression coefficients (often in ways that, intentionally or not, favor the 

hypothesis). An alternative is to apply a mathematical transformation to the data (e.g., 

taking the natural logarithm) so as to alter the shape of the distribution and minimize 

outlier influence. A disadvantage of the latter approach is that it complicates 

interpretation of results, since the conceptualization of the transformed variable is often 

unclear. Whereas a value given in percent change in the BOLD signal is readily 

interpretable, a log-transformed BOLD change value may not be. Moreover, there is 

rarely a principled reason to apply a particular mathematical transformation to the data, 

potentially resulting in a series of post-hoc transformations that can lead to capitalization 

on chance if researchers are not careful. 

Accommodating outliers 

A potentially preferable alternative to manipulating the data itself is the use of statistical 

procedures that can accommodate outliers by reducing their influence. One class of such 

techniques include non-parametric tests, which make no assumptions about the 

distributions of the variables being tested. For example, Pearson’s correlation coefficient 

can be replaced with a number of alternatives such as Spearman’s rho, Kendall’s tau, or 

bootstrapped correlation coefficients (for reviews, see Chen & Popovich, 2002; Efron & 

Tibshirani, 1993; Nichols & Holmes, 2002; Siegel & Castellan, 1988). These tests are 



 35 

appropriate in cases where assumptions of normality are violated (as they may be in the 

presence of outliers); however, they trade off decreased susceptibility to outliers and 

distribution violations against lower power to detect correlations when the assumption of 

normality is met (Siegel & Castellan, 1988).   Of course, given the central limit theorem, 

such normality assumptions are going to be more likely to be violated when the sample 

size is small (N < 30), so this issue may be especially important for neuroimaging studies.  

Non-parametric statistical approaches have been discussed previously in the 

neuroimaging literature, in terms of these tradeoffs (for a review and discussion of 

available software tools, see Nichols & Holmes, 2002).   

An alternative class of methods, termed robust estimation methods, reduce outlier 

influence by downweighting extreme scores in various ways (Cleveland, 1979; 

Rousseeuw & Leroy, 1987; Wager, Keller et al., 2005). In contrast to most non-

parametric methods, simulation studies suggest that many robust estimation methods 

retain nearly the same level of power as parametric methods under conditions of 

normality while providing the expected increase in power in the presence of outliers. 

Wager and colleagues recently used both simulated and empirical data to demonstrate 

that robust estimation techniques can provide substantial power increases in 

neuroimaging analyses affected by outliers without affecting the false positive rate 

(Wager, Keller et al., 2005). Importantly, they show that there is virtually no penalty 

associated with the use of robust estimation when the data contain no outliers. Given 

appropriate software implementation, widespread use of robust estimation in 

neuroimaging analysis could therefore provide a relatively principled approach to 

minimizing the influence of outliers without requiring any special attention or expertise 
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on the part of researchers. The primary limitation of such methods is that they are 

somewhat more computationally intensive than ordinary least-squares regression. 

 

Conclusions 

 Individual differences approaches have found their way into the toolkits of an 

ever-increasing number of cognitive neuroscientists studying WM/EC. Such approaches 

have the potential to greatly further understanding of WM/EC; however, their use should 

ideally be guided by an appreciation of their limitations. A number of specific 

methodological issues should be carefully considered when planning, conducting, or 

analyzing a study involving individual differences analyses. This chapter considered a 

number of such issues, including statistical power limitations, effect size inflation, 

measurement reliability, and treatment of outliers. An overarching theme is that these 

issues overlap only partially with those that apply to standard within-subject analyses 

based on experimental contrasts.   Likewise, we feel it is important that researchers treat 

individual differences and within-subjects analysis approaches as complementary tools 

that are differentially sensitive to specific kinds of mechanisms, and not simply as two 

different ways to test for convergent effects. Although we focused primarily on fMRI 

studies in the present chapter, the issues we discuss are widely applicable to other 

cognitive neuroscience methods such as PET, TMS, and EEG/ERP. Our hope is that 

other researchers will find these considerations useful and take them into account in 

future when designing studies involving analyses of individual differences, and 

interpreting their results. 
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Figure 1. Statistical power as a function of test type (top = one-sample t-test, bottom = 
Pearson's r), sample size, and effect size. 
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Figure 2. Effects of data peeking on Type I error rate as a function of statistical 
threshold, sample size, and peeking interval (1 vs. 5). Peeking is assumed to begin after 
10 participants; beginning earlier would further inflate false positives. 
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Table 1. Statistical power for correlation and one-sample t-test. 
 

   α = 0.05   
 effect size measure    

n r d correlation 
power 

one-sample 
t-test power 

relative 
decrease 

10 0.1 0.2 0.05 0.09 44.4% 
 0.3 0.63 0.12 0.43 72.1% 
 0.5 1.15 0.3 0.9 66.7% 
 0.7 1.96 0.63 1 37.0% 

20 0.1 0.2 0.06 0.13 53.8% 
 0.3 0.63 0.24 0.76 68.4% 
 0.5 1.15 0.62 1 38.0% 
 0.7 1.96 0.95 1 5.0% 

30 0.1 0.2 0.08 0.19 57.9% 
 0.3 0.63 0.36 0.91 60.4% 
 0.5 1.15 0.82 1 18.0% 
 0.7 1.96 0.99 1 1.0% 

50 0.1 0.2 0.1 0.28 64.3% 
 0.3 0.63 0.56 0.99 43.4% 
 0.5 1.15 0.97 1 3.0% 
 0.7 1.96 1 1 0.0% 
      
   α = 0.001   
 effect size measure    

n r d correlation 
power 

one-sample 
t-test power 

relative 
decrease 

10 0.1 0.2 0 0 - 
 0.3 0.63 0 0.03 100.0% 
 0.5 1.15 0.02 0.25 92.0% 
 0.7 1.96 0.1 0.85 88.2% 

20 0.1 0.2 0 0.01 100.0% 
 0.3 0.63 0.01 0.2 95.0% 
 0.5 1.15 0.12 0.87 86.2% 
 0.7 1.96 0.57 1 43.0% 

30 0.1 0.2 0 0.01 100.0% 
 0.3 0.63 0.04 0.44 90.9% 
 0.5 1.15 0.3 0.99 69.7% 
 0.7 1.96 0.88 1 12.0% 

50 0.1 0.2 0 0.03 100.0% 
 0.3 0.63 0.11 0.82 86.6% 
 0.5 1.15 0.67 1 33.0% 
 0.7 1.96 1 1 0.0% 

 
 


