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Although functional neuroimaging studies of human decision-making processes are increasingly
common, most of the research in this area has relied on passive tasks that generate little individual
variability. Relatively little attention has been paid to the ability of brain activity to predict overt
behavior. Using functional magnetic resonance imaging (fMRI), we investigated the neural mechanisms
underlying behavior during a dynamic decision task that required subjects to select smaller, short-term
monetary payoffs in order to receive larger, long-term gains. The number of trials over which the long-
term gains accrued was manipulated experimentally (2 versus 12). Event-related neural activity in right
lateral prefrontal cortex, a region associated with high-level cognitive processing, selectively predicted
choice behavior in both conditions, whereas insular cortex responded to fluctuations in amount of
reward but did not predict choice behavior. These results demonstrate the utility of a functional
neuroimaging approach in behavioral psychology, showing that (a) highly circumscribed brain regions
are capable of predicting complex choice behavior, and (b) fMRI has the ability to dissociate the
contributions of different neural mechanisms to particular behavioral tasks.
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_______________________________________________________________________________

The neural mechanisms governing learning
and reward-seeking behavior in animals have
been investigated extensively (for reviews, see
Berridge, 2003; Schultz, 2000, 2002). Aided by
neuroimaging technologies such as functional
MRI, neuroscientists now are able to overcome
many of the ethical and technical barriers that
once prevented such research in humans,
resulting in a dramatic rise in the number of
studies employing experimental paradigms
that examine behavioral choice processes and
the economic factors that influence them. By
associating gains or losses with the occurrence
of specific events during experimental scan-
ning sessions, researchers have examined the
neural mechanisms underlying several aspects
of decision making (for reviews, see Krawczyk,
2002; Montague & Berns, 2002; Schultz, 2000,
2002). Recent research indicates, for example,
that dissociable neural mechanisms are in-
volved in the experience versus the anticipa-
tion of reward (Pagnoni, Zink, Montague, &
Berns, 2002); that the scale of a neural re-
sponse tends to corresond to the magnitude of

a gain or loss (Elliott, Newman, Longe, &
Deakin, 2003); that the predictability of a re-
ward influences the neural response (Berns,
McClure, Pagnoni, & Montague, 2001); and
that generalized, conditioned reinforcers (e.g.,
money) recruit many of the same brain
regions that represent the value of primary
reinforcers (O’Doherty, Kringelbach, Rolls,
Hornak, & Andrews, 2001).

Such results are informative to neuroscien-
tists, whose goal is to develop models of brain
function. From the perspective of researchers
primarily interested in predicting and modify-
ing overt behavior, however, the heavy reliance
of these studies on passive tasks (e.g., observ-
ing a sequence of predetermined rewards
without the subject’s behavioral interaction)
or on tasks with little individual variability
(e.g., simple gambling tasks or cognitive tasks
where performance is at ceiling) limits their
usefulness in clarifying the relationship be-
tween brain activity and behavior. It is com-
mon for cognitive neuroscientists to report
significant differences in brain activity without
corresponding behavioral changes (Wilkinson
& Halligan, 2004). In contrast, what behavioral
psychologists are likely to desire from a neuro-
scientific approach is evidence that brain
activity can predict behavior at the individual
level, rather than simply displaying aggregated
sensitivity to a variety of experimental manip-
ulations or reward payoffs.
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Increasingly, cognitive neuroscientists have
been rising to the challenge, complementing
group-based analysis with analysis of individu-
al-difference variables. The clearest sign that
neuroscience and behavioral psychology are
converging is the growing number of neuro-
imaging studies aimed at investigating the
extent to which the activity of circumscribed
brain regions directly predict behavior. For
example, Sanfey, Rilling, Aronson, Nystrom,
and Cohen (2003) scanned subjects while they
were playing an Ultimatum Game in which
one player, the proposer, is allotted an amount
of money, any portion of which can be offered
to another person, the responder, who can
either accept or reject the offer. If the re-
sponder accepts, then she receives the amount
offered, and the proposer gets the remainder.
If she rejects the offer, however, then neither
receives anything. Sanfey et al. found that, in the
responder, both emotional and cognitive re-
gions were activated in response to what the
responder considered to be an unfair offer.
Notably, individual differences in the activation
of the insula—an area associated with the
experience and recognition of disgust—were
correlated with individual differences in the
rejection of such offers. Rilling et al. (2002)
found that activation of striatal regions associat-
ed with reward predicted cooperation in an
iterated Prisoner’s Dilemma game. In our own
work, we have shown that lateral prefrontal and
parietal brain regions associated with higher
cognitive processing (Cabeza & Nyberg, 2000;
Smith & Jonides, 1999) selectively mediate the
relationship between fluid intelligence (a trait
measure of reasoning and problem-solving
ability) and cognitive-task performance under
high interference conditions (Gray, Chabris, &
Braver, 2003).

The purpose of the present paper is to
extend recent work at the boundary of
cognitive neuroscience and behavioral psy-
chology by applying functional neuroimaging
to a complex decision-making paradigm. We
emphasize the relationship between brain
activation and overt behavior, and so primarily
report analyses that link neural activity directly
to performance. We also wish to move beyond
simple (correlational) prediction, however,
and use our analyses to illustrate general
principles and issues that arise when trying to
relate brain and behavior. The promise of
fMRI for helping to understand behavior, we

argue, lies not merely in the ability to identify
parts of the brain that support certain kinds of
behaviors, but also in its ability to provide
more detailed insights regarding the temporal
dynamics and mechanisms involved in pro-
ducing those behaviors.

To examine the relation between brain
activity and behavior, we adapted a behavioral
decision-making task (Gray, 1999; Herrnstein,
Loewenstein, Prelec, & Vaughan, 1993; Ku-
dadjie-Gyamfi & Rachlin, 1996) in which
subjects repeatedly sample from two decks of
cards, one of which maximizes reward in the
long run, the other of which minimizes reward
in the long run. Crucially, these maximal–
minimal effects of choosing from the decks are
delayed, and sampling from the good deck
results in a noticeable immediate decrease in
reward, whereas sampling from the bad deck
leads to an immediate increase in reward.
Thus, subjects have to overcome the immedi-
ate, short-term gain associated with choice of
the bad deck in favor of the delayed, long-term
gains associated with choice of the good deck.
The choice of an immediate, smaller reward
over a delayed, larger reward is said to
exemplify impulsivity, whereas choice of the
delayed, larger reward is said to exemplify self-
control (Ainslie, 2001; Green & Myerson,
1993; Logue, 1988; Rachlin & Green, 1972).
The dynamic nature of this task (i.e., the fact
that the reward function interacts with a sub-
ject’s choice history) sets it apart from most
other neuroimaging decision-making studies,
which usually employ static reward contingen-
cies that do not reflect the dynamic nature of
most real-world environments.

The difficulty of the task was varied by
changing the number of trials (the window size)
over which the long-term effects accrue. When
the window size is small, incremental changes
in reward are large and thus relatively easy to
detect; however, as the window size grows, the
changes in reward associated with the delayed
effect become smaller and, as a consequence,
are more difficult to detect. In the present
study, we used two window-size conditions: an
easy condition, in which the delayed effects
accrued quickly (over 2 trials; termed the
short-window condition), and a more difficult
condition, in which the delayed effects ac-
crued slowly (over 12 trials; termed the long-
window condition). Previous work (including
our own unpublished pilot data) using similar
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parameters indicated that these values were
likely to induce substantial differences in
behavior, with subjects performing relatively
well (i.e., choosing mostly from the immedi-
ately smaller, but long-term higher payoff
deck) in the short-window condition and
performing relatively poorly (i.e., choosing
more often from the immediately larger, but
long-term lower payoff deck) in the long-
window condition (Herrnstein et al., 1993).

The present experiment had three goals:
First, we wanted to determine whether activa-
tion in relatively circumscribed brain regions
could predict complex decision-making behav-
ior. Second, we predicted that manipulation of
the window size over which the delayed effects
accrue would modulate the brain-behavior
relationship, but that some commonalities
should remain (i.e., the same regions should
predict performance in both the short- and
long-window conditions, although perhaps to
differing degrees). Finally, we sought to
dissociate the influence of cognitive from
affective or motivational neural activations on
behavior. Cognitive factors are expected to
drive behavior by influencing the ease with
which relevant perceptual information can be
extracted from stimuli and by modulating the
amount or complexity of information that
needs to be integrated in order to generate the
optimal course of action. In contrast, affective
factors influence the relative saliency of
specific representations of rewards or punish-
ers, and operate by biasing behavior in a more
transient fashion. The relation between these
systems is complex and interactive, but sub-
stantial evidence suggests that at least some
components of the neural systems subserving
cognitive and affective processing are separa-
ble (Bush, Luu, & Posner, 2000; Phan, Wager,
Taylor, & Liberzon, 2002). However, in many
cases it is difficult to assess the relative
contribution of cognitive and affective factors
to behavioral performance in complex task
situations. Our goal was to illustrate that
functional neuroimaging may be well suited
to the decomposition of behavior into these
component systems.

METHOD

Subjects

Subjects were 28 right-handed undergradu-
ates at Washington University in St. Louis and

individuals from the surrounding community
(mean age 5 22.4 years, SD 5 3.6) recruited
using flyers placed around the Washington
University campus. All subjects consented to
participate in return for financial remunera-
tion ($25 per hr plus task earnings). Task
earnings were redeemed at the rate of 1 cent
for each point earned, and subjects were
subsequently mailed a check for the total
amount. Potential subjects with a neurological
or psychiatric history were excluded from the
experiment, which was approved by the
Washington University IRB. Due to technical
malfunctions during neuroimaging, 2 subjects
did not complete both conditions. Results,
therefore, are reported for the 26 subjects for
whom we had complete data.

Behavioral Procedures

Prior to scanning, each subject was familiar-
ized with the behavioral paradigm alone in
a small room, facing a computer monitor. The
computerized decision task was adapted from
previous behavioral experiments (e.g., Herrn-
stein et al., 1993) and presented using the
PsyScope software package (Cohen, MacWhin-
ney, Flatt, & Provost, 1993). Subjects read the
following instructions:

The task is to draw cards from one of two decks
to earn money. Each time you see a question
mark, you should choose a card from the left
or right deck. Some cards pay more money and
others less money; money is never lost. The two
decks are different, and there is a way to earn
significantly more or less points. You will be
paid real money for each point. Try to earn as
much as possible.

On each trial a question mark was shown
midway between two decks of cards. When one
of two response keys was pressed, the corre-
sponding deck was highlighted and the top
card of that deck was ‘‘turned over’’ to reveal
a number, representing the amount earned on
that trial. The response time, deck chosen, and
amount earned were recorded. Cumulative
earnings were updated on each trial. Subjects
were given practice trials until they indicated
they understood and were comfortable with
the procedure. This typically required approx-
imately five trials and no more than 15 in any
case. Note that the purpose of the practice was
solely to familiarize subjects with the computer
program; they were not exposed to the actual
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contingencies used during the task (i.e.,
during the practice, all deck selections re-
sulted in five points). Once practice was over,
subjects were led into the scanner room and
placed in the scanner. No further instructions
were given.

The reward contingencies were pro-
grammed such that choice of one deck always
paid out a larger reward than the other deck
on that current trial, but gradually decreased
the amount of the reward to be received from
both decks over the next several trials. In
contrast, choice of the other deck paid
a smaller amount on that trial, but gradually
increased the amount to be received from
both decks over the next several trials. Thus,
choice of the locally optimal deck, called the
bad deck (i.e., the one with the higher
immediate reward), led to the global mini-
mum in terms of total earnings. Conversely,
the globally larger reward was earned by

choosing the deck that paid off less on any
given trial, called the good deck because it led
to the global maximum.

The payoff functions of the good and bad
decks are shown as solid lines in Figure 1. Both
lines have the same slope, but the line for the
bad deck is two points higher than the line for
the good deck, reflecting a switch-associated
increase or decrease in points earned. That is,
switching from the bad deck to the good deck
moved the payoff from the higher line to the
lower one, and resulted in an immediate two-
point decrease in earnings on the switch trial.
Conversely, switching from the good to the
bad deck moved the payoff from the lower to
the higher line and resulted in an immediate
two-point increase. Repeated selection from
the bad deck led to a decrease in earnings on
each subsequent trial (i.e., the payoff moved
leftward along the x axis), whereas repeat-
ed selection from the good deck led to an

Fig. 1. Points earned as a function of the percentage of choices of the good deck in the previous 2 (short condition)
or 12 (long condition) trials. Notice that the global and local maxima were in direct opposition: Choice of the bad deck
produced an immediate larger but long-term lower payoff, whereas choice of the good deck led to an immediate smaller
but long-term greater payoff (see text for full details).
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increase in earnings on subsequent trials (a
move rightward along the x axis). The long-
term effect (i.e., one’s position on the x axis)
was computed as a function of the number of
good deck choices a subject made over the last
few trials. For example, if a subject had chosen
from the good deck on 75% of the most recent
trials, then she would be three-quarters of the
way up on the reward function; if the subject
had selected from the good deck on 25%
of the most recent trials, then she would
be a quarter of the way up on the reward
function.

The ease with which subjects were expected
to discern the underlying pattern and choose
the good deck depended critically on the
temporal-window parameter, W. This parame-
ter was the number of trials over which
amount of reward was computed. In Figure 1,
the x axis refers to the percentage of good-
deck choices made within the last W trials;
thus, the subjects’ locations along the abscissa
were determined by dividing the number of
trials on which they had selected the good
deck (out of the last W trials) by W. The
globally optimal strategy would be to select
exclusively from the good deck. However,
responding optimally required that the subject
temporally integrate responses and their pay-
offs across multiple trials. The larger the value
of W, the greater the difficulty in performing
the task successfully since each move along
the x axis was smaller and more difficult
to discern as compared to the immediate
effect of switching (e.g., when W is 2, it would
take only 2 trials to move the entire length of
the x axis, but when W is 12, it would take 12
trials).

W was set at 2 in one condition and 12 in the
other. We refer to these as the short and long
conditions, respectively. To ensure that the
task would not be too easy, random fluctua-
tions were introduced: On 40% of all trials,
one point was randomly added to or sub-
tracted from the amount earned. Performance
was defined as the percentage of choices from
the good deck (range: 0–100%; no consistent
preference or chance performance 5 50%).
Because trials on which subjects failed to
respond resulted in no payoff, response omis-
sions (which totaled only 1.4% of trials across
all subjects) were grouped with bad selections
for the purpose of computing choice perfor-
mance.

To accommodate fMRI scanning, subjects
performed the task as eight runs of 40 card-
choice trials each, with 160 trials at each
temporal-window parameter. The sequence
of events during a trial is shown in Figure 2.
Following 2520 or 5040 ms of passively viewing
a fixation cross (a variable inter-trial interval
necessary for the fMRI design), two decks
appeared on the screen. The decks remained
on screen for 2520 ms or until the subject
responded by pushing one of two buttons
(mapped to the index and middle fingers of
the subject’s right hand) on a response appa-
ratus to indicate his or her choice of a deck.
Immediately following a choice, subjects saw
how much they had earned on that trial; the
outcome remained on the screen for the
remainder of the trial, which totaled
5040 ms. All eight scanning runs were per-
formed consecutively on the same day. After
the first four runs (160 trials), subjects were
told that they now were doing a task that

Fig. 2. Time course of an individual trial. Subjects viewed a fixation cross for either 2520 or 5040 ms (depending on
random jittering), following which two decks appeared on-screen, and subjects made their selection. Each trial lasted
5040 ms. Subjects had up to 2520 ms within which to make their response, following which the deck they chose was
immediately uncovered and the reward amount was displayed for the remainder of the trial.
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looked the same but was, in fact, a different
task and that they should approach it ‘‘starting
from scratch.’’ The order in which subjects
experienced the two conditions was counter-
balanced.

Neuroimaging procedures

Imaging occurred while participants were
lying prone within the bore of a head-only 3
Tesla Allegra System (Siemens, Erlangen,
Germany) MRI scanner. Task stimuli were
presented visually on a rear-projection display
that was viewed with a mirror positioned
directly above the eyes. Head movement
during scanning (which can cause significant
image artifacts) was minimized using pillows
and tape. Functional images were acquired
using an asymmetric spin-echo echo-planar
sequence (TR 5 2,520 ms, TE 5 25 ms, flip 5
90u), sensitive to blood-oxygen-level-dependent
(BOLD) magnetic susceptibility. Each scanning
run gave 165 sets of brain volumes (40 slices of
3.75 mm thickness), which allowed whole-brain
coverage. Due to a change in acquisition
software, the last 12 subjects were erroneously
scanned with 1.875 mm spacing between slices.
However, it is unlikely that this error sub-
stantially affected the results, since considerable
smoothing of the fMRI data was employed,
rendering minor gaps relatively inconsequen-
tial. Moreover, any effect would consist in
a relative reduction in power rather than
a systematic bias, and thus would not influence
interpretation of the results (though it might
artificially weaken them). Anatomical images
were acquired using an MP-RAGE T1-weighted
sequence, which enabled registration and local-
ization of the functional data to brain anatomy.
After movement and artifact correction, func-
tional images were normalized within each
scanning run and temporally aligned within
each brain volume. Functional images were
resampled into 3 mm isotropic voxels, trans-
formed into atlas space, and smoothed with
a Gaussian filter (9 mm FWHM).

A general linear model (GLM) approach
was used to estimate brain activity during the
decision-making task. We used a mixed
blocked/event-related design in order to de-
compose brain activity into state and item
components (Donaldson, Petersen, Ollinger,
& Buckner, 2001; Visscher et al., 2003). The
main conceptual point to note about this
design is that it enables one to separate

sustained brain activity related to demands
imposed throughout the task (state-related
activity) from transient brain activity associated
with demands imposed specifically during
individual trials (event-related activity). Pre-
vious research suggests that this design mea-
sures the operation of distinct functions
(Braver, Reynolds, & Donaldson, 2003; Do-
naldson et al., 2001). In the present context,
state-related activity was more likely to indicate
persistent task demands such as maintenance
of instructions or strategies, whereas event-
related activity indexed the response to the
transient demands of specific trials and thus
likely indicated neural activity associated with
rapid decision making, choice of deck, and the
subject’s neural response to individual reward
payoff. A more detailed description of the
neuroimaging analysis procedures used for
this dataset can be found in a separate report
(Yarkoni et al., 2005). More general treat-
ments of neuroimaging methodology can be
found elsewhere (e.g., Cabeza & Kingstone,
2001; Huettel, Song, & McCarthy, 2004).

RESULTS

We first verified that the manipulation of
window size had the intended effect on deck
selectivity, after which we analyzed subjects’
acquisition of deck preferences and deck-
switching behavior as a function of different
task factors. Neuroimaging results are pre-
sented following the behavioral performance
data. All results refer to data from the
scanning sessions only.

Behavioral results

At both the group and individual levels, the
window-size manipulation was successful.
Mean percentage choice of the good deck in
the short (window size 5 2) and long (window
size 5 12) conditions was 71% and 23% across
all trials, respectively, and each differed
significantly from chance, t(25) 5 6.4 and
212.5, respectively, both ps , .001, as well as
from each other, t(25) 5 10.41, p , .001.
Figure 3 shows mean percentage choice in
each window-size condition for each subject.
Every subject performed better in the short
condition than in the long condition (i.e.,
made more choices of the good deck, and
earned more money). Additionally, there was
an unanticipated negative correlation between
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performance in the two conditions, r 5 2.41, p
, .04. As may be seen in Figure 3, subjects who
chose the good deck more frequently in the
short condition tended to choose the bad deck
more frequently in the long condition.

Although all subjects performed better in
the short condition than in the long condi-
tion, there was a marked asymmetry in the
degree of susceptibility to the experimental
manipulation across the two window-size con-
ditions. Applying the binomial threshold for

a departure from chance significant at the p ,
.01 level over the 160 trials in the short
condition (i.e., choice of the good deck .
60%) resulted in a group of 17 subjects who
performed significantly above chance and 9
who did not. In contrast, application of the
same threshold to the long condition (choice
of the good deck , 40%) indicated that 23 of
26 subjects performed significantly more
poorly than chance. Eight of the 9 subjects
who failed to show an effect in the short

Fig. 3. Percentage choice of the good deck as a function of window size. Each line represents a single subject. Solid
lines represent subjects who first were studied in the long (W 5 12) condition; dashed lines represent those subjects first
studied in the short (W 5 2) condition.

NEURAL MECHANISMS OF DECISION MAKING 543



condition (i.e., choose from the good deck
at greater-than-chance levels) nonetheless
showed an effect in the long condition (i.e.,
choose from the bad deck at greater-than-
chance levels), and only 1 subject failed to
show an effect in both conditions. Thus, the
negative correlation between the two condi-
tions likely was not attributable to a failure of
the manipulation to affect choices for some
subjects. An alternative possibility was that
differences in susceptibility to the manipula-
tion across subjects might have been due to
the fact that the order in which subjects
performed the two conditions was counter-
balanced. To evaluate this possibility, we
regressed performance in each condition on
an order variable. Results were nonsignificant
in both cases, p . .10 (see also Figure 3;
compare the solid lines, which represent
choice of the good deck by subjects first
studied in the long condition, with the dashed
lines, which represent choice of the good deck
by subjects first studied in the short condi-
tion). Thus, the negative correlation in per-
formance across the two conditions appears to
be due to individual differences and not to
a failure of the manipulation or to order
effects.

To determine whether individuals differed
in the rate at which they acquired a preference
for a deck in each condition, we examined
choice of the good deck across the 160 trials of
each condition. As Figure 4A shows, overall,
subjects acquired their preferences quickly: in
the short condition, mean percentage choice
of the good deck differed significantly from
chance after 20 trials, t(25) 5 2.43, p , .03; in
the long condition, only 10 trials were re-
quired before choice of the good deck was
significantly below chance, t(25) 5 24.03, p ,
.001. Once acquired, preference remained
significantly different from chance throughout
the remainder of the condition. There were
notable differences, however, across subjects.
Figure 4B shows mean percentage choice of
the good deck under the short and long
condition by those subjects who performed
significantly above chance in the short condi-
tion. These subjects showed a statistically
significant preference for the good deck
within the first 20 trials in the short condition,
t(16) 5 2.68, p , .02, and a statistically
significant preference for the bad deck within
10 trials in the long condition, t(16) 5 3.16, p

Fig. 4. (A) Mean percentage choice of the good deck
in the short (W 5 2) and long (W 5 12) condition as
a function of trial block. (B) Mean percentage choice of
the good deck for the group of subjects whose perfor-
mance differed significantly from chance in the short
condition. (C) Mean percentage choice of the good deck
for the group of subjects whose performance did not differ
significantly from chance in the short condition. Error
bars represent 95% confidence intervals.
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, .006. In contrast, as can be seen in Figure 4C,
the subjects who performed at chance level in
the short condition by definition never de-
veloped a preference for the good deck in the
short condition, t(8) 5 1.25, p . .10, yet still
showed a statistically significant preference for
the bad deck within the first 10 trials in the
long condition, t(8) 5 2.36, p , .05. Regres-
sing good-deck choice on the 160 trials in each
condition (i.e., estimating the learning slope
for each subject) yielded similar results. For
high performers (i.e., those subjects who chose
from the good deck at a rate significantly
above chance level in the short condition), the
regression coefficient differed significantly
from chance in both conditions (short condi-
tion: mean 5 .19, t(16) 5 4.37, p , .001; long
condition: mean 5 2.15, t(16) 5 26.65, p ,
.001), whereas for the low performers (i.e.,
those subjects who did not choose from the
good deck at a rate above chance level in the
short condition), the regression coefficient
differed in the long condition (mean 5 2.1,
t(8) 5 23.5, p , .008), but not in the short
condition (mean 5 .02, t(8) 5 .78, p . .10).

The results show that choice was influenced
by the window-size manipulation. However,
the rate of subjects’ selections from the good
deck was expected to vary systematically not
just as a function of window size but also in
response to changes in received reward
amount. To evaluate whether subjects would
be more likely to switch decks following
a decrease in reward than after receiving an
increase in reward (i.e., a win-stay/lose-shift
[WS/LS] strategy), we conducted a 2 (window
size: short vs. long) 3 2 (last deck: good vs.
bad) 3 3 (reward change: increase, decrease,
or no change) ANOVA with proportion of
trials on which subjects switched decks as the

dependent variable. Because 5 of the 26
subjects were missing trials in at least one cell
in the design, we included only the 21 subjects
who had a complete table of results. (In-
cluding the additional subjects where possible
for individual main effects or two-way interac-
tions did not change the pattern of results.)

Results of the analysis indicated significant
main effects of deck (F(1) 5 7.17, p , .02) and
reward change (F(2) 5 12.53, p , .001), which
were qualified by a two-way window size 3 deck
interaction (F(1) 5 119.32, p , .001) and
a three-way window size 3 deck 3 reward
change interaction (F(2) 5 3.79, p , .04).
Table 1 displays the pattern of results. Subjects
were more likely to switch decks following
a decrease in reward (mean 5 .45) than
following no change (mean 5 .37; t(20) 5
2.75, p , .02) or an increase (mean 5 .31;
t(20) 5 5.08, p , .001) in reward, consistent
with the use of a WS/LS strategy. Moreover,
the probability of switching from a particular
deck was modulated by the subjects’ deck
preference in each condition. In the short-
window condition, subjects overall were more
likely to switch from the bad deck (.45) than
from the good deck (.27; t(20) 5 7.94, p ,
.001), whereas in the long-window condition,
subjects overall were more likely to switch from
the good deck (.56) than from the bad deck
(.21; t(20) 5 5.80, p , .001). Finally, the three-
way interaction suggests less differential sus-
ceptibility to changes in reward amount in the
short-window condition when selecting from
the good deck as compared to the other deck
3 window size conditions. That is, when
selecting from the good deck in the short
condition, there was a relatively small differ-
ence between the proportion of trials on which
subjects switched following a decrease (.31)

Table 1

Proportion of trials (and standard deviations) on which subjects switched deck as a function of
window size, change in reward amount, and last deck selected from. For example, the top-left cell
(with a value of .31) indicates that, in the short condition, subjects who had just made a selection
from the Good deck and received a smaller reward than on the previous trial selected from the
Bad deck on the next trial 31% of the time. Values are derived from the 21 subjects who had
a complete factorial table.

Deck

Short Condition Long Condition

Reward Reward

Decrease No change Increase Decrease No change Increase

Good .31 (.21) .25 (.20) .26 (.19) .61 (.23) .59 (.21) .47 (.26)
Bad .54 (.17) .46 (.24) .36 (.18) .33 (.17) .16 (.1) .15 (.09)
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versus following an increase (.26) in reward.
The corresponding difference was significantly
larger in all three of the other conditions (all
comparisons p , .05). Thus, the basic tenden-
cy of subjects to use a WS/LS strategy appears
to be modulated by learning, such that the
acquisition of a preference for the good deck
in the short condition renders subjects less
susceptible to trial-to-trial fluctuations in re-
ward amount.

Neuroimaging results

Neuroimaging studies typically proceed by
identifying brain regions that are sensitive to
the main effects of an experimental manipu-
lation and subsequently drawing inferences
about the role of those regions. A standard
approach given the present data, therefore,
would be to contrast brain activity during the
short condition with brain activity during the
long condition. Such analyses are important in
their own right and form the basis of a separate
paper on this data set (Yarkoni et al., 2005).
However, they are not the optimal analyses to
conduct when the goal is to understand which

brain regions contribute directly to behavioral
differences between individuals. Instead, re-
gression analyses that employ an index of overt
behavior (e.g., choice of the good deck in the
long condition) as a variable in an equation
predicting brain activity are more appropriate.
Thus, most of the analyses we report below
predominantly rely on regression rather than
subtractive contrasts. Although desirable, gen-
uine single-subject analyses are not possible for
the neuroimaging data because estimates of
brain activity with an fMRI design involving
rapid events require averaging across many
trials. Thus, we could not analyze patterns of
neural change across single trials within in-
dividual subjects.

To determine the degree to which event-
related (i.e., transient) and state-related (i.e.,
sustained) brain activity predicted choice
behavior in the two different conditions, we
regressed performance separately on state- and
event-related brain activity. To reduce the
probability of false positives due to multiple
comparisons (since our images each contained
over 65,000 voxels), we employed the common

Table 2

Talairach coordinates of all brain regions that either predicted behavioral choice or were
sensitive to changes in reward amount. Coordinates indicate center of mass for each region. BA
5 Brodmann Area; mm3 5 volume of region in millimeters cubed.

Region Hemisphere

Coordinates

BA mm3 x y Z

Regions predicting good deck choice in short condition
Brainstem 2241 22 221 23
Putamen L 1026 216 3 9
Pulvinar L 837 214 224 12
Dorsal lateral PFC R 9/46 2160 46 30 30
Superior lateral PFC L 6/9 1512 244 3 33
Superior lateral PFC R 6/9 648 40 3 39
Inferior parietal cortex L 39 567 234 260 36
Inferior parietal cortex L 40 1323 252 242 245
Medial prefrontal cortex L 6/8 1566 22 15 51

Regions predicting good deck choice in both conditions
Temporal pole L 36 1026 216 3 230
Superior lateral PFC R 6/8 1161 44 18 45
Inferior parietal cortex R 7 594 28 272 48
Inferior parietal cortex R 7 324 22 278 51
Inferior parietal cortex L 7 405 232 263 57

Regions sensitive to changes in reward amount
Lateral cerebellum R 351 28 275 242
Ventral temporal lobe R 20 486 50 233 227
Medial orbitofrontal cortex L 11 216 214 45 221
Temporal pole L 38/47 432 32 12 218
Anterior insula L 13 648 238 15 9
Inferior parietal cortex R 40 648 46 239 57
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threshold of p , .001 uncorrected, and
thresholded clusters for extent at 8 voxels
(i.e., only clusters comprising 8 or more
contiguous voxels, each significant at p ,
.001, were considered reliable).

When correlating choice of the good deck
with state-related brain activity, no region
attained significance in either the short or
long condition. However, in the short condi-
tion, event-related brain activity in sever-
al regions was significantly correlated with
choice. This set of regions included large
clusters in right dorsolateral prefrontal cortex
(DLPFC), left inferior parietal cortex, and
medial frontal cortex (Table 2; Figure 5, blue).
Good-deck choice correlated negatively with
activity in all regions (i.e., those subjects who

made more selections from the good deck
showed less activation), and the association
was strongest in the DLPFC cluster, r 5 2.75,
p , .001.

To ensure that we did not miss any brain-
behavior relationships of a more moderate
effect size that would not attain significance at
the threshold used above, we conducted
a complementary analysis using a conjunction
approach to identify regions that predicted
performance in both conditions. That is, we
sought to identify brain activation in either the
short condition or the long condition that
predicted choice of the good deck in both.
The presence of regions that met these criteria
was expected on the basis of behavioral data
indicating a significant negative correlation

Fig. 5. Brain regions associated with either choice performance or reward sensitivity. Blue: regions in which variation
in event-related neural activity in the short condition predicted individual differences in deck choice during the short
condition. Green: regions in which variation in event-related neural activity in the short condition predicted individual
differences in deck choice in both conditions. Red: regions that displayed sensitivity to variation in trial-to-trial changes in
reward amount, aggregated across subjects. Top panels: lateral surface of the brain; bottom panels: medial surface; left
panels: left hemisphere; right panels: right hemisphere. Note that all activations are mapped to a composite,
standardized brain, and do not represent any single subject. For the regression analyses (blue and green), the figure
shows regions in which between-subjects differences in level of activation predicted between-subject differences in
behavioral choice. For the group-based analysis (red), the figure shows regions that were significant in a within-subjects
ANOVA with change in reward amount as the only factor.
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between performance in the short and long
conditions. The advantage of conducting
a conjunction analysis rather than a simple
correlational approach is that the probability
of the same region correlating with two sep-
arate behavioral indices purely by chance is
substantially lowered, thereby affording the
use of more liberal thresholds for each index
separately (in this case, p , .05, two-tailed; for
similar approaches, see Braver et al., 2003;
Yarkoni et al., 2005).

Thresholding for extent at 8 voxels, no
pattern of state-related brain activation in
either condition was significantly associated
with behavioral performance in both condi-
tions. The same held true for event-related
brain activation in the long condition. In the
short condition, however, event-related activa-
tion in several regions significantly predicted
choice of the good deck in both the short and
long conditions (Table 2; Figure 5, green). A
strong effect (correlation with choice in short
condition: r 5 2.59, p , .001; long condition:
r 5 .53, p , .001) was observed in a cluster
located in right superior PFC contiguous with
(though more superior than) the one ex-
tracted in the previous analysis. Figure 6 shows
scatter plots of performance in each condition
regressed on event-related brain activity in this
area during the short condition. When con-
trolling for activation level in this area, the
relation between behavioral performance in
the short and long conditions became in-
significant (r 5 2.15, p . .10). Statistical
mediation analysis indicated this reduction in
effect size to be marginally significant (Sobel
test, z 5 1.85, p , .07), tentatively suggesting
that right superior activity partially mediated
the behavioral relationship between perfor-
mance in the two conditions. Note that this
mediation analysis allows us to infer only that
the data are consistent with a path model in
which causality flows through the mediating
variable (MacKinnon, Lockwood, Hoffman,
West, & Sheets, 2002; Shrout & Bolger,
2002). Although the results are suggestive,
they do not allow us to conclude with certainty
that neural activity in right PFC causally
mediated the behavioral relationship.

An interesting feature of the above results
was that all of the analyses correlating brain
activity with behavioral performance failed to
identify brain areas commonly associated with
processing of reward-related or affective in-

formation, including frontal cortex, basal
ganglia, amygdala, and insular cortex (for
reviews, see Montague & Berns, 2002; Phan
et al., 2002; Schultz, 2000). Four possibilities
might account for this observation. First, the
failure to locate reward-sensitive regions could
be technical in nature, as it is notoriously
difficult to image accurately parts of ventro-
medial cortex (Ojemann et al., 1997). Second,
it is possible that the experimental manipula-
tion of reward amount was not strong enough
for subjects to detect consistently, although
this seems unlikely given the clear-cut behav-
ioral results. Third, it is possible that the
neural response was differentially sensitive to
magnitude of gain, but that this sensitivity
itself did not play a role in modulating choice
performance. Finally, it may be that the
regions sensitive to reward in the present task
were identical to or overlapped with those that
predicted choice performance.

To disambiguate these possibilities, we di-
vided trial-to-trial changes in reward amount
into 3 bins (viz., increase, decrease, and no
change) and conducted an ANOVA with
reward-amount change as the only factor in
order to identify any brain regions sensitive to
changes in reward at a threshold of p , .001
uncorrected. We restricted this analysis to the
short condition since brain activity in the long
condition was not predictive of behavior.
Several clusters survived threshold, notably
including a cluster in left anterior insula
(Table 2; Figure 5, red). Previous fMRI studies
have observed insular activation in response to
both negative and positive outcomes (Elliott,
Friston, & Dolan, 2000; Knutson, Fong,
Adams, Varner, & Hommer, 2001). The insula
also is associated with emotional responses
during tasks involving cognitive demand
(Phan et al., 2002), as well as with negative
responses to unfair offers in an Ultimatum
Game (Sanfey et al., 2003). In the present
study, the insula responded more strongly to
a decrease in reward payoff than to an increase
or no change in reward (see Figure 7). Other
regions displayed different patterns, for
example, selectivity for increases in reward.
Of note, there was no overlap between
performance-sensitive and reward-sensitive re-
gions (Figure 5). Activation in the reward-
sensitive regions did not predict performance
level, and conversely, performance-sensitive
regions showed no sensitivity to changes in
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Fig. 6. Percentage choice of the good deck in the short (W 5 2) condition (top panel) and long (W 5 12) condition
(bottom panel) as a function of right superior PFC event-related brain activity in the short condition.
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reward magnitude. Thus, there appear to be
dissociable neural mechanisms for detection
versus integration of reward information.
Whereas regions such as the insula signaled
the presence of salient reward-related infor-
mation on a trial-by-trial basis, the neural
response in right PFC and other brain regions
tracked the behavioral preferences that sub-
jects acquired over multiple trials.

DISCUSSION

A key finding of the present study was that
activation in right lateral PFC during the short-
window condition predicted subjects’ overall
choice performance in both conditions. Pre-
vious neuroimaging studies have implicated
lateral PFC activation in a variety of cognitive
control processes, including inhibition of
interference as well as maintenance, integra-

tion, and manipulation of information (Ca-
beza & Nyberg, 2000; Smith & Jonides, 1999).
Indeed, the great majority of tasks involving
effortful cognition have resulted in activation
in this region (Duncan & Owen, 2000).
Although the complexity of the decision-
making task does not allow us to draw fine-
grained conclusions about the cognitive pro-
cesses employed by subjects, the results are
consistent with the suggestion that variation in
a neural network associated with higher
cognitive processing drove variation in behav-
ioral choice during the task. Subjects who
performed well in the short condition and
poorly in the long condition showed less event-
related activation in lateral PFC, suggesting
individual differences in the task-related need
for higher cognitive processing. Because a de-
fining feature of the decision-making task is
a tension between immediate and delayed

Fig. 7. Mean percentage change in BOLD signal in left anterior insula as a function of trial-to-trial changes (increase,
no change, or decrease) in reward amount. Error bars represent 95% confidence intervals. Each circle represents
a single subject.
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rewards, one possibility is that these individual
differences reflect variation in subjects’ im-
pulse control, namely, the ability to inhibit
choice of the bad deck, which is associated
with an immediate gain, so as to receive the
larger, long-term gains associated with choice
of the good deck.

An unexpected finding was the negative
correlation between choice performance in
the short and long conditions. It would seem
reasonable to suppose that subjects who show
greater impulse control in the short condition
also would show greater control in the long
condition. This was not the case, however. One
possibility that can account for the failure to
find such a pattern is that individual differ-
ences in choice reflected degree of engage-
ment in the task rather than an ability to
control one’s impulsive choices. Perhaps some
subjects were actively engaged in the task
whereas others chose to respond more ran-
domly rather than make a genuine effort. The
former group might be expected to succeed in
the short condition (i.e., choose from the
good deck), which has a relatively tractable
solution, but to perform more poorly in the
long condition, in which the most salient
aspect is the immediate reward increase
associated with choice of the bad deck. In
contrast, subjects who respond relatively
unsystematically likely would bring their per-
formance closer to chance levels in both
conditions, resulting in relatively poorer per-
formance in the short condition but relatively
better performance in the long condition.
However, the fact that the majority of subjects
were sensitive to the experimental manipula-
tion in the long condition, performing below
chance, argues against such an explanation.
Nine subjects performed at chance level in the
short condition but only 3 performed at
chance level in the long condition. Thus,
random deck selection by some subjects does
not appear to be a plausible explanation for
the negative correlation in choice responding
between conditions.

Consistent with the negative correlation
between choice in the two conditions, event-
related activity in right PFC during the short
condition correlated negatively with good
deck choice in the short condition but
correlated positively with good deck choice
in the long condition. Although it may seem
counterintuitive for the same brain region to

predict opposite performance in the two
conditions, it is important to realize that the
event-related neural response is not a measure
of total task-related neural activity but rather
is a measure specifically of transient activation
linked to individual decision-making trials (as
opposed to entire task blocks). A larger event-
related neural response in PFC most likely
reflects a greater need for controlled proces-
sing during individual trials in subjects who
did not develop a strong preference for one of
the decks. In contrast, subjects who repeatedly
chose from one deck may have required less
controlled processing during trials since their
selection process was relatively automated (i.e.,
almost always selecting from the same deck).
In the short condition, in which most subjects
rapidly acquired a preference for the good
deck, such automation would lead to a negative
correlation between PFC activity and good-
deck choice, since those subjects who failed to
acquire a preference (and consequently per-
formed more poorly) would persist in exercis-
ing greater trial-related control processes.
Conversely, in the long condition, in which
most subjects rapidly developed an automated
preference for the bad deck, a failure to
develop a preference would lead to a positive
correlation between PFC activity and good
deck choice, since those subjects who persisted
in exercising trial-related decision-making pro-
cesses were likely to perform closer to chance
(i.e., better).

Note that while this account explains the
general role of event-related PFC activity in
relation to the decision-making task, it sheds
little light on the nature of the processes that
led subjects to acquire deck preferences in the
first place. Because most subjects developed
preferences rapidly in both conditions (typi-
cally within 10–20 trials), the rapid event-
related fMRI design we used did not allow for
sufficiently fine-grained analyses to identify
the neural mechanisms that drove preference
acquisition. Based on the behavioral data
indicating that, overall, subjects were more
likely to switch decks more often following
a decrease in reward than following an in-
crease, one possibility is that at least some of
the subjects were using a relatively simple win–
stay/lose–shift (WS/LS) strategy. Alternatively,
subjects may have used a more deliberative
process. In a previous report on this data set
we argued that a WS/LS account could not
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fully explain other aspects of the neuroim-
aging results (not reported here), and we
provided evidence suggesting that the PFC
may support the integration of information
(i.e., trial outcomes) over time (Yarkoni et al.,
2005). A more detailed understanding of the
preference-acquisition process awaits further
behavioral manipulations or alternative fMRI
designs, but the interplay between behavioral
and fMRI results in this experiment illustrates
the mutually constraining roles that these
different levels of analysis can play.

An important caveat to the interpretation of
the event-related right PFC activity as an index
of controlled processing is that state-related
PFC activation did not significantly predict
behavior in either the short or the long
condition. The absence of a relation between
sustained neural activity and task behavior may
seem counterintuitive since one might expect
that differences in strategy across subjects
would be more likely to show up in sustained
rather than transient patterns of brain activa-
tion. For example, a strategy of repeatedly
choosing from the same deck should involve
little cognitive effort on individual trials, but
might require that the strategy be kept actively
in mind throughout the task, thereby influ-
encing sustained neural activity. One possible
explanation for the failure to find a relation
between sustained neural activity and choice is
a lack of statistical power. Because the magni-
tude and variance of the state-related hemo-
dynamic response in the short condition was
much larger, on average, than the correspond-
ing event-related response (state activity mean
5 0.16% BOLD increase, SD 5 0.34%, vs.
event-related activity mean 5 0.07% BOLD
increase, SD 5 .13%), it may be that the
strategic differences in task performance that
were observed in the event-related response
were obscured by other sources of variance in
the state-related response. Regardless of the
final explanation, this null result serves as
a reminder that neuroimaging data are highly
complex and are to be interpreted cautiously.

Results from functional neuroimaging may
offer insight into the neural systems that
underlie differences in behavioral perfor-
mance. Given that the present task involves
temporally extended decision-making involv-
ing explicit rewards, we postulated that two
neural systems might be involved: (a) a higher
cognitive system capable of integrating re-

sponse-outcome relations in order to detect
temporal contingencies and trends (e.g.,
amount of reward tends to increase following
repeated selections of the good deck), and (b)
an affective/reward system sensitive to fluctua-
tions in trial-to-trial reward. From a purely
behavioral standpoint, it is difficult to de-
termine which mechanism predominates un-
der the different conditions in the present
task. The fMRI data, however, offer some
insight in this regard. Whereas lateral PFC,
a region closely tied to higher cognitive
processing, predicted subjects’ level of choice
performance, no area associated with reward
processing showed a similar relation. This was
not due to a null result in the latter case since
the neural response in the insula, a region
associated with emotion and reward proces-
sing, was sensitive to changes in reward
amount. Rather, it appears that choice de-
pended primarily on variability in the degree
to which subjects engaged higher cognitive
processes, and not on the degree to which
subjects manifested an affective response to
trial-to-trial changes in reward. This result
illustrates the ability of fMRI to dissociate the
putative mechanisms underlying a behavioral
task and offers evidence that neuroimaging
can serve as an important complement to
behavioral analyses.

A general principle exemplified in the
present data is that activity in relatively
circumscribed areas of the brain may accurate-
ly predict individual differences in complex
behaviors. For example, the maximal correla-
tion between right superior PFC activation and
choice performance in the short condition was
r 5 2.75. The magnitude of this correlation
may surprise those unfamiliar with recent
imaging studies that find similarly strong
correlations between isolated brain activity
and overt judgment or behavior across a wide
variety of contexts (e.g., Canli et al., 2001;
Lieberman et al., 2004). One might expect
that successful performance on complex tasks
would require the involvement of many parts
of the brain acting in concert, thereby
minimizing the likelihood of finding strong
correlations with individual regions. Some
critics have formalized this notion, going so
far as to argue on principled grounds that
higher cognition cannot be localized to
circumscribed brain regions (e.g., Uttal,
2001).

552 TAL YARKONI et al.



Our use of cluster-size thresholding and
complementary conjunction analyses on re-
gions identified at lower thresholds reduced
the probability of false positives in the present
study. In addition, we showed that controlling
for right DLPFC activation rendered the
correlation between choice performance in
the short and long conditions insignificant.
We would suggest, therefore, that given the
magnitude of the correlations obtained, it is
not unreasonable to entertain the possibility
that complex cognitive functions are localized
to specific regions. Of course, the fact that
most fMRI studies focus on a small number of
brain regions for analysis does not mean that
other parts of the brain do not play an
important role in the behavior. In our study,
the brain–behavior correlation was strongest
in right lateral PFC, but activation in many
other brain regions also predicted perfor-
mance (Figure 5, blue and green). Moreover,
lowering the threshold of significance would
have led to the identification of still other
brain areas that may be veridically involved in
the task. Likewise, in another report in which
we conducted standard group analyses on this
data set, we observed that task performance
produced changes in the activity of a wide-
spread network of brain regions (Yarkoni et
al., 2005). Thus, circumscribed brain activity
can be predictive of behavior without implying
that activity in a single region constitutes
a necessary or sufficient condition for behav-
ior.

Overall, our results demonstrate the utility
of an approach that jointly employs functional
neuroimaging and traditional behavioral anal-
ysis. The present study, although limited in
several respects, represents one of the first uses
of fMRI to investigate the relationship between
neural activity and complex, overt decision-
making behavior. Future studies could build
on our results in several ways. One potential
line of research would be to employ the same
basic paradigm we used but modify aspects of
the design in order to address some of the
limitations of the current study. For example,
the inability to estimate brain activity locked to
individual trials could be ameliorated by using
slower event-related fMRI designs with greater
spacing between trials. Similarly, titrating task
parameters such as window size and reward
magnitude in order to slow down preference
acquisition could increase the power to detect

neural activity related to learning itself as
distinct from its subsequent effects on choice.

Alternatively, the approach we used could
be extended to other areas of research in-
volving higher-order decision-making process-
es. For example, the hypothesis that PFC is
critically involved in self control and impulsiv-
ity, and underlies choice in tasks involving
long- versus short-term reward tradeoffs, pre-
dicts that individuals with poorer impulse
control should show both poorer choice
patterns and reduced lateral PFC activity on
tasks similar to the present one. Although
neuroimaging studies of this type have, to our
knowledge, not yet been conducted, such
a prediction is consistent with prior behavioral
work (e.g., Hinson, Jameson, & Whitney,
2003).
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