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ABSTRACT—Vul, Harris, Winkielman, and Pashler (2009,

this issue) argue that correlations in many cognitive neu-

roscience studies are grossly inflated due to a widespread

tendency to use nonindependent analyses. In this article, I

argue that Vul et al.’s primary conclusion is correct, but for

different reasons than they suggest. I demonstrate that the

primary cause of grossly inflated correlations in whole-

brain fMRI analyses is not nonindependence, but the per-

nicious combination of small sample sizes and stringent

alpha-correction levels. Far from defusing Vul et al.’s

conclusions, the simulations presented suggest that the

level of inflation may be even worse than Vul et al.’s em-

pirical analysis would suggest.

Vul, Harris, Winkielman, and Pashler (2009, this issue) argue

that correlations in many cognitive neuroscience studies are

grossly inflated due to a widespread tendency to use what they

refer to as nonindependent analyses. A number of other com-

mentators in this issue have taken issue with this conclusion,

arguing either that nothing is wrong with the correlations fMRI

studies have produced or that if anything is wrong, it’s at least

much less wrong than Vul et al. suppose. In this commentary, I

adopt a different perspective. I argue that Vul et al.’s primary

conclusion—that r values are inflated—is correct, but primarily

for reasons other than those they suggest. Building on recent

work by Yarkoni and Braver (in press), who discussed a number

of conceptual and methodological issues related to the analysis

of individual differences in fMRI studies, I demonstrate that the

primary cause of inflated correlations in whole-brain fMRI an-

alyses is the pernicious combination of small sample sizes and

stringent alpha-correction levels. Far from defusing Vul et al.’s

conclusions, the simulations presented suggest that the level of

inflation may be even worse than Vul et al.’s empirical analysis

would suggest.

NONINDEPENDENT ANALYSIS IS NOT THE
WHOLE STORY

Vul et al. suggest that many cognitive neuroscientists have used

what they term nonindependent analyses to identify correla-

tions: They first identify contiguous voxels that show a strong

association between activation and behavior on the basis of

surpassing some threshold and then conduct a second correla-

tion test on the average of all voxels within the region, reporting

only the latter r value as the final estimate of effect size. Vul et al.

argue that this procedure capitalizes on chance and produces

inflated r values by ‘‘selecting noise that exhibits the effect being

searched for’’ (p. 279). Although this may be true to an extent, it

can also be demonstrated that nonindependent testing isn’t—

and in fact, can’t be—the source of all, or even much of, the

inflation in r values.

To see this, suppose that we decide to test a correlational

hypothesis using what Vul et al. would consider to be an inde-

pendent analysis. We define 10 a priori regions of interest (ROIs)

on the basis of some prior criterion (e.g., anatomy), average all

the voxels within each region, and then correlate the mean level

of activation within each region with behavior. We then report

the resulting r value for all 10 ROIs in our published article. Are

the resulting r values subject to inflation? The intuitive answer is

no, because the procedure used to identify the ROIs is com-

pletely independent of the activation levels observed within

those ROIs. But the truth is that the r values are only unbiased so

long as we ignore any distinction between regions that show a

significant effect and those that don’t. When correlations are

identified on the basis of attaining significance, they are indeed

susceptible to inflation. Indeed, at sample size and p value pa-

rameters typical of fMRI studies, the degree of effect size in-

flation can potentially dwarf that suggested by Vul et al. (cf. their

Fig. 5).

The presence of inflated correlations is readily demonstrated.

Suppose that the actual population-level correlation in our hy-

pothetical study is .4—an effect size that would be considered

very large in most domains of psychology (cf. Meyer et al., 2001).

Let’s further suppose that there are 20 subjects in our sample
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and that we conduct each ROI-level test at an alpha-threshold of

p < .005 (p < .05 corrected for 10 comparisons). A power cal-

culation reveals that the probability of detecting a significant

effect in each ROI is only 13%.1 In other words, on average, only

1.3 of the 10 ROIs will show a significant effect in our sample.

Critically, the mean r value within ROIs that do show a signifi-

cant effect cannot possibly be .4, because the critical r value for

a sample size of 20 tested at p < .005 is .6. So even if the

population effect size is relatively large at .4, our hypothetical

fMRI study will systematically inflate significant rs to a mini-

mum of .6. On average, inflation will be still worse: Simulating

10,000 tests with the above parameters results in a mean sig-

nificant r of .69. Clearly, gross inflation of r values can occur

even in cases where researchers follow all of Vul et al.’s rec-

ommendations and use only independent analyses.

THE PROBLEM IS POWER

If inflation of r values still occurs independently of (non)inde-

pendence, what can we attribute it to? The answer is statistical

power—or, more accurately, a lack of power. A review of the vast

literature on power is beyond the scope of this commentary (for

accessible overviews, see Cohen, 1992; Maxwell, 2004; Sedl-

meier & Gigerenzer, 1989); for present purposes it’s enough to

note that power is the probability of detecting a significant effect

in one’s sample given that that effect really exists in the popu-

lation (i.e., the hypothesized association is nonzero).

Researchers underappreciate the fact that the power to detect

between-subject effects is typically much lower than the power

to detect within-subject effects of an equivalent magnitude.

Yarkoni and Braver (in press) plotted power curves for correla-

tion tests and t tests across a range of sample sizes and alpha

levels commonly used in fMRI studies (reproduced here as

Fig. 1). We showed, for example, that the power to detect

a canonically large effect size of d 5 0.8 (Cohen, 1988) using

a one-sample t test in a sample of 20 subjects tested at p< .001

is approximately 40%. In contrast, the power to detect a roughly

equivalent r of approximately 0.36 in the same sample is only

2.6%. The importance of this point is difficult to overstate:

Under reasonable assumptions, the power to detect correlational

effects may be as little as 5%–10% of the power to detect sim-

ilar-sized within-subject effects. And testing at a more liberal

level of p < .05 doesn’t help much: In that case, the power

discrepancy is 92% versus 32%.

Yarkoni and Braver (in press) reviewed a number of negative

consequences associated with the use of low-powered correla-

tional tests in fMRI studies. The most obvious is the failure to

detect real effects—that is, Type II error, which is simply the

complement of power. Needless to say, failing to detect real ef-

fects is never a good thing, and investigators should strive to

always conduct adequately powered studies. However, a less

widely appreciated consequence of low power is the aforemen-

tioned inflation of significant effect sizes. This point is illus-

trated systematically in Figure 2, which demonstrates that for all

but the largest fMRI sample sizes (i.e., anything up to at least 30

subjects), one can expect massive inflation of significant r values

for all but the strongest population effects. For example, a

population effect of 0.3 will show up, on average, as a significant

r of 0.73 when identified in a sample of 20 subjects tested at a

p < .001 threshold. In fact, the mean significant r value for 20

subjects at p< .001 shows almost no movement as a function of

the real correlation size, simply because the critical r value is

already so high (.65).

The combination of low power and effect size inflation can

easily lead to misinterpretation of fMRI results if investigators

are not careful. Many behavioral measures probably correlate

relatively diffusely with brain activation in the general popu-

lation. Suppose, for example, that there is a .3 correlation be-

tween a broad personality dimension like neuroticism and

activation in half of the brain when people look at aversive

pictures. An investigator who conducts a whole-brain analysis in

a sample of 20 subjects is unlikely to detect more than a couple

of relatively circumscribed neuroticism-related regions due to

low power; moreover, correlations will be grossly inflated within

the identified regions, hovering around 0.75–0.80 on average. So

although the correct characterization may be that a given brain–

behavior relationship is modest in size and spatially diffuse, a

small-sample whole-brain analysis is likely to instead conclude

that it’s extremely strong and highly selective.

JUST HOW STRONG ARE THESE CORRELATIONS?

There is, admittedly, a very large assumption underlying the

pessimism suggested by the above discussion. Namely, one has

to assume that the real size of brain–behavior correlations is

approximately the same as, or not much larger than, the corre-

lations typically observed in behavioral studies. One might

think this is pretty unlikely, because empirically, brain–

behavior correlations appear to be huge. But such reasoning

is circular: The primary reason people suppose that brain–

behavior correlations are so much stronger than behavior–be-

havior correlations is because of the very same effects that Figure

2 calls into question. So instead, we need to turn to other lines of

evidence and argument. Here, I’ll focus on just three reasons to

think that population correlations between brain activation and

behavior aren’t really as big as previous results suggest.

First, there’s the admittedly subjective argument from plausi-

bility. It is worth considering what exactly investigators are

claiming when they report an r of, say, 0.85. The implication is

that over 70% of the variance in a dimension like neuroticism or

1For the sake of simplicity, I assume throughout this article that all tests are
conducted on independent observations. The numbers change slightly in the
presence of nonindependence, but the central point remains unchanged. Sim-
ilarly, I deal only with intensity (voxel-wise) thresholds and ignore cluster
thresholds, which will reduce power further when combined with a constant
intensity threshold.
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empathy or fluid intelligence is explained by activation in just one

brain region for a very specific contrast in a task that is probably

not all that reliable to begin with (both Vul et al. and Yarkoni &

Braver, in press, review a number of studies that, collectively,

raise questions about the reliability of fMRI). In systematic

studies of psychological and biomedical effect sizes (e.g., Meyer

et al., 2001), one rarely encounters correlations greater than .4.

Correlations of .85 are practically unheard of, unless they are

trivial (e.g., between two self-report measures of the same con-

struct). So investigators should be very careful when concluding

that the huge correlations routinely observed in fMRI studies

provide accurate estimates of population effect sizes.

Second, an investigator who believes in big rs has to explain

why it is that most within-subject contrasts identify relatively

distributed patterns of activation, whereas correlational ana-

lyses do not. Why is it that we tend to see many more ‘‘selec-

tive’’ effects in correlational analyses? There’s no good

conceptual reason to suppose that individual differences ef-

fects are so much more localized than within-subject effects.

But that discrepancy is exactly what one would expect if power

is substantially lower for between-subject analyses than for

within-subject analyses. An underpowered fMRI analysis will

consistently produce spatially circumscribed and numerically

inflated effects.
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Fig. 1. Statistical power as a function of test type (top: one-sample t test; bottom: Pearson’s r), alpha level (left: p< .05; right: p< .001), sample
size, and effect size.
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Third, a believer in big rs needs to explain why big rs appear to be

the exclusive province of small-sample studies. Vul et al.’s meta-

analysis demonstrates that correlations >.8 are not rare in fMRI

(see their Fig. 5). But virtually all of the data points come from

studies with sample sizes< 30, and the majority of them come from

studies with samples far smaller than that. To my knowledge, no

fMRI study with 50 or more subjects has ever reported a correlation

of .8 or greater. If one believes that brain–behavior correlations of

that strength exist in the population, the absence of any large-

sample studies reporting such correlations is inexplicable. As

sample size grows, the variance around the effect size estimate

decreases, providing an increasingly better estimate of the popu-

lation effect. So why wouldn’t we see larger r values in big studies?

In fact, what tends to happen is exactly the opposite: As sample

size grows, effects shrink. Yarkoni and Braver (in press) gave the

example of two recent studies by Gray and colleagues (Gray &

Braver, 2002; Gray et al., 2005). The first study (N 5 14) identified

very strong correlations (rs ranging from �.63 to �.84 across

different conditions) between behavioral activation sensitivity (a

personality dimension conceptually related to extraversion) and

anterior cingulate cortex activation during a working memory task

(Gray & Braver, 2002). The second study (N 5 53) replicated the

effect, but with a much smaller correlation of �.28 (Gray et al.,

2005). As a study with 53 participants provides much more reli-

able effect size estimates than one with 14 participants, the like-

liest explanation for the discrepancy is that the large rs in the first

study were grossly inflated by the aforementioned combination of

small sample size and stringent alpha thresholds. Indeed, if you

suppose that the real population correlation was in the neighbor-

hood of, say, .3, then even a study with 53 subjects testing at p <

.05 would only have a 59% chance to detect the effect. So, if

anything, Gray et al. may have been lucky to replicate the effect in

their second study. Needless to say, the idea that you might need 50

subjects just to have approximately even odds of detecting an

effect within an a priori ROI tested at p< .05 may be a difficult one

to swallow, but it’s far likelier to hold true than the notion that one

can get by with only 12 or 15 subjects.

IMPLICATIONS

Truth be told, it is hard to quantify exactly how much of a problem

lack of power is for correlational analyses in fMRI studies, be-

cause we don’t conclusively know what type of effect sizes exist in

the population. But the above considerations suggest that it is

very unlikely that most brain–behavior correlations are stronger

than, say, .5—an effect size that would already seem extremely

large to most behavioral researchers. An fMRI study with 20

subjects would have a 61% chance to detect a .5 correlation even

at a ‘‘liberal’’ threshold of p< .05—not terrible, but certainly not

adequate. But if an investigator decides to conduct a whole-brain

analysis at, say, p < .001, power drops to just 12%. To achieve a

conventionally acceptable level of 80% power, it would take 29

subjects at p < .05 and a full 60 at p < .001.

The implication is that it is almost certain that the vast majority

of whole-brain correlational analyses (a) identify only a fraction

of the effects that really exist in the population, (b) grossly inflate

the apparent size of those effects that researchers are lucky en-

ough to detect, and (c) promote a deceptive illusion of highly

selective activation. Far from dispelling Vul et al.’s conclusions,

these considerations suggest that matters may be even worse than

Vul et al. suggest. Cognitive neuroscientists don’t just have to

worry about the inflated r values that they do see, they also need

to worry about the many correlations that aren’t detected due to

insufficient power. Consistently running studies that are closer to

0% power than to 80% power is a sure way to ensure a perpetual

state of mixed findings and replication failures.

WHAT TO DO ABOUT IT

Vul et al.’s chief recommendation is that investigators always use

independent analyses. Although this recommendation will help

reduce inflation of correlations to some extent, it doesn’t address

the underlying problem of insufficient power. Yarkoni and

Braver (in press) made a number of suggestions for dealing with

low power and inflated r values. The most obvious, but also most

painful, solution is to increase sample size. Simply put, if the

primary objective of a study is to detect individual differences in

brain activation, a sample size of 20 should be considered flatly

unacceptable. One would need the population correlation to be

.6 in order to have an 80% chance of detecting the effect in the

sample at p< .05; that’s a gamble one should be very hesitant to

take. If one intends to conduct whole-brain analyses, a more
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Fig. 2. Inflation of significant r values as a function of sample size (x axis)
and population effect size (lines). Each point represents the result of
10,000 simulated correlation tests, each conducted at a threshold of p <
.001, reflecting the most commonly used whole-brain threshold. Dashed
lines represent the true correlation size; solid lines represent the mean
observed correlation in the sample for only those tests that produce sig-
nificant results.
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reasonable sample size might be 50—and that would still pro-

vide only a 66% chance to detect correlations of .5 at p < .001!

Needless to say, fMRI samples this large are extremely expen-

sive and time-consuming to collect. But the fact that it’s difficult

to collect large samples is not a good enough reason to keep

running underpowered studies. Most cognitive neuroscientists

would be skeptical of an investigator who planned to conduct a

within-subject study with only 7 subjects without first doing a

power analysis; yet, for many combinations of effect size and p

value, a one-sample t test with 7 subjects actually provides more

power than a correlation test with 20 subjects (cf. Fig. 1).

Second, investigators should perform power calculations prior

to beginning fMRI data collection and should generally report

those calculations in their manuscripts. Reviewers and editors

should similarly be encouraged to request or require authors to

report power calculations when none are provided. Many power

analysis tools are freely available either as stand-alone appli-

cations or as add-ons to popular statistics packages,2 and many

Web sites provide instantaneous power calculations for various

statistical procedures. The time investment required to perform

a series of power calculations is negligible, and the potential

pitfalls of failing to do so enormous, so investigators have every

incentive to be diligent about power considerations.

Third, with respect to inflation of significant r values, investi-

gators should either pay little or no attention to the size of cor-

relations or report all correlations with confidence intervals and

pointedly emphasize their likely unreliability. The former mea-

sure seems excessively strong until one remembers that almost

nobody ever reports effect sizes for t tests or analyses of variance,

despite many journals’ explicit encouragement to do so. Ideally,

psychologists would focus on those measures of effect size that

stem from much more powerful within-subject tests and would

question or even ignore those that come from lower powered

correlational tests. In practice, however, we seem to do exactly the

opposite. So outright elimination of r from the pages of our jour-

nals should be considered a viable option, if only for consistency’s

sake. The alternative—reporting confidence intervals around

every r—is probably better, but is much more cumbersome.

Finally, reviewers should be skeptical of any correlational

study that purports to find a ‘‘selective’’ relation between brain

and behavior. Unless an fMRI study has an extremely large

sample size, investigators should be very wary of claiming that

some regions show an effect whereas others do not. Single and

double dissociations are enormously powerful tools when used

in the context of a high-powered within-subjects study, but it is

difficult to conceive of many situations in which a correlational

study would have enough power to make a corresponding claim.

Suppose, for example, that two a priori anatomical ROIs are

tested in a sample of 20 subjects and that Region A is found to

correlate significantly with Measure X but not Y whereas Region

B correlates significantly with Measure Y but not X. If the real

correlation between A and X is 0.5, and the real correlation

between A and Y is 0.3, there is a 62% chance to detect the A–X

correlation, but only a 24% chance to detect the A–Y correla-

tion. Clearly, single and even double dissociations will not be

hard to come by when power is low.

CONCLUSIONS

In sum, the present considerations suggest that Vul et al. are

essentially correct with respect to their primary conclusion:

Correlations in cognitive neuroscience are inflated, and probably

to an even greater extent than Vul et al. suggest. However, this

inflation primarily reflects a lack of power rather than the use of

nonindependent analyses. The bad news is that many correla-

tional effects that seemed too good to be true almost certainly were

too good to be true; r values on the order of .7 to .8 probably

shouldn’t be trusted. What’s worse, for every significant r that

made it to print, there were probably many others that were

overlooked and that now sit patiently in people’s brains waiting to

be discovered by higher powered studies. Admittedly, that’s pretty

bad news. But the good news is that there’s no mystery behind the

inflation of r; we know exactly what to do about low power, and it’s

just a matter of spending the time and money to do it.
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