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Cognitive neuroscientists increasingly recognize that
continued progress in understanding human brain func-
tionwill require not only the acquisition of new data, but
also the synthesis and integration of data across studies
and laboratories. Here we review ongoing efforts to
develop a more cumulative science of human brain
function. We discuss the rationale for an increased focus
on formal synthesis of the cognitive neuroscience litera-
ture, provide an overview of recently developed tools
and platforms designed to facilitate the sharing and
integration of neuroimaging data, and conclude with a
discussion of several emerging developments that hold
even greater promise in advancing the study of human
brain function.

Science by synthesis
Science is, by nature, a cumulative endeavor. Scientific
advances generally build directly on previous studies and
issue findings that only make sense in light of existing
knowledge. In cognitive neuroscience, as in many other
scientific disciplines, a gold standard for scientific progress
and accumulation of knowledge has historically been the
‘critical experiment’: a single empirical test that decisively
disqualifies one or more hypotheses from further consider-
ation [1]. Valuable as they can be, however, critical experi-
ments are not the only way to make scientific progress. In
fields such as genetics, cognitive science and, we argue,
functional neuroimaging, important scientific advances
also result from the synthesis and modeling of existing
data, in addition to the collection of new data. The overall
behavior of a system as complex as the human brain cannot
readily be inferred from isolated analyses of a few vari-
ables. No single experiment can control for all, or even
most, extraneous variables; and even if it were possible to
isolate and control a single variable – that is a single brain
region or psychological factor – the ‘critical experiment’
would only allow for very limited inferences about human
behavior. In recognition of these basic principles, a trend
has emerged across disciplines towards the synthesis of
data and modeling of the overall behavior of highly multi-
variate systems. These approaches build on accumulated
evidence from hundreds or thousands of individual experi-

ments, and provide a ‘bird’s eye view’ that complements the
traditional experimental approach.

In this article, we review recent efforts to accelerate
progress in cognitive neuroscience through greater formal
synthesis of the rapidly growing primary literature. We
begin by elaborating on the motivation for such an ap-
proach by discussing several constraints that limit the
ability of individual brain-imaging studies to draw strong
inferences about structure–function relationships. Next,
we briefly review key historical developments and discuss
several currently available tools and techniques for aggre-
gating, organizing and analyzing existing neuroimaging
data. Finally, we turn a speculative eye towards the future
and discuss potential developments that might accelerate
the development of a cumulative cognitive neuroscience.

The rationale
Why is an increased focus on formal synthesis of cognitive
neuroscience literature needed? Much of the difficulty in
drawing strong and selective inferences about brain struc-
ture and function reflects fundamental statistical and
methodological constraints that are difficult, if not impos-
sible, for most individual studies to overcome. We focus
here on several limitations that can be ameliorated by
synthesizing results across many experiments and labora-
tories.

Most neuroimaging studies are underpowered
Most neuroimaging studies produce maps of brain regions
that are activated by some process of interest. When
researchers draw inferences about brain–behavior rela-
tionships from such maps, they often tacitly assume that
these maps provide a relatively comprehensive and accu-
rate picture of the true effects. Unfortunately, this assump-
tionwill probably fail inmost cases. The small sample sizes
(typically 15 – 20 subjects) and stringent statistical thresh-
olds (P < .001 or lower) commonly used in fMRI studies
might provide little power to detect anything but extremely
large effects in many circumstances [2–4]. As a result,
many if not most fMRI analyses will detect only a fraction
of the true effects, producing a deceptive illusion of ‘selec-
tive’ activation. Moreover, because researchers typically
report only those results that attain statistical signifi-
cance, the effect sizes reported in the literature tend to
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be substantially inflated [2,5]. Because pragmatic consid-
erations suggest that sample sizes in most neuroimaging
studies will probably remain relatively small, synthesis of
results via meta-analysis offers the best way to increase
statistical power and, ultimately (via image-based meta-
analyses discussed below), better effect size estimates.
Moreover, unlike large, highly powered studies of a single
paradigm, meta-analysis can capture effects that are con-
sistent across laboratories and task variants (Box 1).

False positive results are prevalent
Because of the large number of comparisons tested in a
typical neuroimaging study, even relatively conservative
uncorrected statistical thresholds (e.g. P < .001) are usu-
ally insufficient to adequately control the false positive rate
across the entire volume (e.g. the brain). In recent meta-
analyses, Wager and colleagues estimated the incidence of
false positives among published stereotaxic coordinates
(‘foci’) at approximately 15% – considerably above the
conventionally expected 5% level, even with a modal
threshold of P < .001 [6]. Although individual studies gen-
erally cannot distinguish true activations from false posi-
tives, meta-analyses can at least separate consistent
findings from idiosyncratic ones.

Direct replication is uncommon
A hallmark of the scientific method is its emphasis on
replicating findings across different studies. Unfortunate-
ly, the high cost of fMRI data collection often precludes
direct replication of previous fMRI studies; more typically,
researchers focus on ‘conceptual’ replications that retain
features of a previous study while introducing a new
manipulation or context. In addition, there is no consensus
on exactly what constitutes a replication. In voxel-wise
mapping studies, which currently dominate the field, it is
unclear how close an activation peak must be to a previ-
ously reported one, or how much overlap in activated

voxels two maps must share, to count as a replication.
These difficulties arise in part because inferences are
typically made on whether voxels are activated and not
directly on where activated regions are located. Meta-
analyses have the potential to ameliorate these problems
by defining consensus areas that can be tested in direct
replications.

Selective association is difficult to establish
A primary goal of cognitive neuroscience research is to
selectively associate particular functions with specific
regions or networks. However, the standard cognitive
neuroscience strategy of determining which brain regions
are associated with a particular manipulation of cognitive
function is not well suited for the identification of selec-
tive structure–function associations because overlapping
brain regions can be reliably activated by multiple psy-
chological functions [7]. To identify truly selective map-
pings, one must establish both that a specific task
consistently activates a given region, and that the same
region is not consistently activated by many other tasks
[8] – a challenging proposition for any individual study.
For example, common assumptions about the mapping
between neural and mental activity can be empirically
tested using meta-analysis, and often prove to be incor-
rect – such as the notion that increased amygdala activity
is a specific marker of negative emotions such as fear
(Box 1; Figure 1).

Formal structure is needed
There is a growing tendency within cognitive neuroscience
to move beyond simple brain-behavior mappings, which
focus on where in the brain activation is occurring, toward
more integrativemodels that seek to characterize the large-
scale functional–anatomic organization of the brain. This
shift in focus is reflected, for example, in efforts to identify
core networks underlying human cognitive function: for

Box 1. Meta-analysis of neuroimaging: goals and techniques

Meta-analysis techniques provide a way of aggregating data across
studies and testing the replicability of effects across laboratories,
sites and study variants; they are increasingly used to evaluate and
synthesize the research literature. For example, recent meta-
analyses of drug treatments for depression have explicitly exam-
ined publication bias [55], and have called into question the
benefits of antidepressants for mild and moderate depression
[56,57].

Neuroimaging meta-analyses are typically based on published
three-dimensional coordinates for activation locations, with dozens of
published meta-analyses of various basic and clinical topics [39,40].
Although a variety of approaches have been used [40], the dominant
approaches use kernel-based reconstruction of meta-analytic statis-
tical maps (see Figure 1a and [6,25] for details). Such meta-analyses
can serve many functions, a few of which we describe below:
! Consensus a priori regions of interest (ROIs). Areas such as the

‘anterior cingulate’ span thousands of brain voxels. Results from
prior studies of even narrowly-defined tasks can span broad
regions, limiting their usefulness for ROI development. Meta-
analysis can provide a consensus specification of precise voxels
of interest, reducing multiple comparisons and increasing power.

! Evaluating psychological specificity. Quantitative discrimination
among psychological states requires comparison of results across
many task domains, patient groups and so on. Meta-analysis is
uniquely suited for such comparisons. For example, although the

amygdala is sometimes considered synonymous with fear, meta-
analytic evidence indicates that it is at least as activated for disgust
([53]; Figure 1b).

! Testing existing hypotheses. As in other domains, neuroimaging
meta-analyses can be used to assess the accumulated evidence for
existing hypotheses. Exemplar meta-analysis results include find-
ings that amygdala responses in emotion tasks are left lateralized
and are stronger for negative emotion, confirming prior hypotheses
[58], coupled with lack of support for right-hemisphere dominance
in emotion and limited support for differential frontal lateralization
by valence.

! Establishing correspondence across domains. Meta-analysis can
help establish commonalities and dissociations across task types or
patient groups. For example, a recent meta-analysis established
common amygdala and insula hyper-reactivity across three kinds of
anxiety-related disorders, but found hypoactivity in ventromedial
prefrontal cortex only in post-traumatic stress disorder [52].

! Developing new hypotheses. Negative emotion is sometimes
considered synonymous with the amygdala, but other areas that
seem crucial in animal models, such as the periaqeductal gray
(PAG) and hypothalamus, are rarely mentioned in human studies. A
recent meta-analysis found evidence for replicable activity in
human studies of emotion in both regions ([51]; Figure 1c). Such
findings can lead researchers to consider the importance of PAG
activity in new studies.
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example the ‘default’ network [9] and the ‘task-positive’
network [10] – so named for their high levels of activity at
rest and responsivity to a range of tasks that require exter-
nal attention, respectively. The ‘core network’ approach
complements the more conventional focus on isolated brain
regions. The introduction of multivariate approaches such
as independent component analysis (ICA) [11] and related
techniques to the fMRI arsenal have provided researchers
with powerful tools for modeling networks. A major barrier
to progress, however, is the relative absence of an overarch-
ing framework for describing neural and mental function.
There is currently little consensus about how to classify or
group different brain regions, networks, experimental tasks
or cognitive functions, let alone how to develop mappings
between different levels of description. Development of
suitable descriptive frameworks (or ‘ontologies’) of cognitive
and brain function cannot be accomplished within individu-
al studies that focus narrowly on specific experimental
contrasts, and will instead require the formal synthesis of
large portions of the published literature.

The methods
Many researchers in the field of cognitive neuroscience
increasingly appreciate the importance of conducting for-
mal syntheses of cognitive neuroscience literature. In this
section we summarize relevant history and discuss several
recently developed tools and platforms designed to facili-
tate the sharing and integration of neuroimaging data. Our
review is by no means exhaustive; it mainly emphasizes
what we view as some of the more promising recent devel-
opments.

Data aggregation, atlasing and sharing
One way to increase the power and generalizability of
neuroimaging studies is to aggregate data across multiple
sites and studies [12]. This entails bringing data from
different studies into a common spatial framework (an
atlas) and a common data format, and also making the
data readily available. Over the past two decades, there
have been important advances on all three fronts. Many of
these advances were fueled by the Human Brain Project

[(Figure_1)TD$FIG]

Figure 1. Meta-analysis of neuroimaging data: methods and application. (a) Coordinate-based meta-analysis. Whereas early kernel-based approaches were based on
simply aggregating coordinates across a set of studies [37,50], recent approaches explicitly test replicability across studies and allow for weighting by sample size and study
quality [6,25]. The diagram shows the procedure for one of the newer techniques, Multilevel Kernel Density Analysis [51,52]. Reported peaks are separated by contrast map
(often synonymous with study) and convolved with a spatial smoothing kernel. A weighted average map is constructed, considering sample size and other measures of
study quality. The map is thresholded by randomizing the locations of the within-study activation regions many times (e.g. 10000) and calculating the null-hypothesis
distribution of the maximum across the image. This threshold provides family-wise error rate control, so that any region in the resulting thresholdedmap can be interpreted
as more consistently activated across studies than would be expected by chance. Similar methods are available for comparing two or more task conditions (see [40]). (b)
Results in the sublenticular extended amygdala (Amy) from a meta-analysis comparing emotional tasks across emotion types (adapted from Table 1 in [53]). Amygdala
responses are not specific for fear. (c) Results in the periaqueductal gray (PAG), hypothalamus (Hy), and amygdala across studies (adapted from [51]). Replicable activation
in the PAG points towards new hypothesis about PAG’s previously under-appreciated role in human emotion.

Review Trends in Cognitive Sciences Vol.14 No.11

491



[13], Biomedical Informatics Research Network (BIRN;
http://www.birncommunity.org/), and other targeted fund-
ing mechanisms in the USA and other countries.

The Talairach atlas and its associated stereotaxic
space, which allows for the reporting of stereotaxic coor-
dinates (foci) describing the centers of brain activations or
deactivations associated with various tasks, were intro-
duced to neuroimaging in the 1980s [14,15] as a way to
compensate for individual variability in brain size, shape
and patterns of cortical folding. Efforts to improve align-
ment and better compensate for variability have yielded a
plethora of magnetic resonance (MR)-based atlases (both
single-subject and probabilistic) and stereotaxic spaces,
thereby posing a fresh set of challenges for comparing
results across studies [16–18]. A crucial factor supporting
the shift toward greater integration of the cognitive neu-
roscience literature has been the development of large-
scale online databases [17,19,20] that provide support for
rapid data mining, visualization, and analysis of stereo-
taxic coordinates from many studies. Two of the most
prominent such databases are the BrainMap database
(http://www.brainmap.org) [21,22] and SumsDB (http://
sumsdb.wustl.edu/sums) [23,24], each of which contains
study metadata and activation coordinates for a sizable
proportion of the neuroimaging literature. Both databases
contain extensive functionality for searching, retrieving
and analyzing neuroimaging data, although they also
have somewhat different emphases (e.g. BrainMap inter-
operates closely with Activation Likelihood Estimate
(ALE) meta-analysis software [25], whereas SumsDB
has greater support for online and offline visualization
[23,26]). The emergence of such databases has greatly
lowered the barrier to formal integration of the research
literature, giving rise to a proliferation of studies focusing
on synthesis of previous findings rather than generation of
primary data.

Although stereotaxic coordinates are easy to report and
communicate, they constitute a compact but impoverished
distillation that belies the spatial complexity and richness
of neuroimaging data. An early database infrastructure
that could handle the full complexity of imaging data was
developed in the 1990s by the fMRIData Center (fMRIDC),
which was devoted to storing and sharing large reposito-
ries of primary as well as processed neuroimaging data
[27,28]. The fMRIDC faced significant challenges, includ-
ing infrastructure limitations, the use of seemingly incom-
mensurable experimental paradigms and data formats,
and a reluctance on the part of many researchers to freely
share their data [19,28]. Although it no longer accepts new
contributions, the fMRIDC has inspired other recent devel-
opments designed to facilitate multi-site collaboration and
data sharing of full image information. These include the
XNAT (eXtensible Neuroimaging Archive Toolkit) soft-
ware platform for the storage and dissemination of neuro-
imaging data [29], as well as web-based resources such as
the Neuroimaging Informatics Tools and Resources Clear-
inghouse (NITRC) for neuroimaging tools [30] and the
Neuroscience Information Framework (NIF, http://
www.neuinfo.org/; [31]), which provides easy access to a
rapidly growing set of databases, neuroimaging tools and
other online resources.

Collaborative efforts to aggregate and share data have
also produced several very large, publicly accessible data-
sets.The recent release of the1000FunctionalConnectomes
Project – containing data from over 1400 participants
scanned at over 35 sites – provides researchers with a
valuable dataset for studying brain function during the
resting state [32], and can serve as a model for similar
efforts using different experimental paradigms. Additional
resources include the OASIS dataset (http://www.
oasis-brains.org/; [33]) and the ADNI project (Alzheimer’s
DiseaseNeuroimaging Initiative;http://www.adni-info.org/;
[34]), and the recently announcedHumanConnectomeProj-
ect will soon similarly provide immense amounts of infor-
mation onbrain connectivity ina largepopulation of healthy
adults (http://www.humanconnectome.org).

Meta-analysis
Researchers have conducted informal qualitative and
quantitative meta-analyses of functional neuroimaging
data for nearly two decades [35–38]; until recently, howev-
er, published meta-analyses were relatively rare. The
recent development of standardized and user-friendly
meta-analysis software has led to the rapid adoption of
stereotaxic coordinate-based meta-analysis as a primary
tool for formal integration of neuroimaging results (Box 1;
Figure 1; for review, see [6,39,40]). Meta-analyses combin-
ing the results of dozens or even hundreds of studies, often
reflecting thousands of discrete activation peaks, have
been successfully applied in many areas of cognitive neu-
roscience, ranging from focal analyses of specific cognitive
tasks to large-scale analyses of the emotion literature to
characterizations of brain disorders (for a summary, see
[40]). Such meta-analyses have generally complemented,
and in some cases supplanted, the conclusions drawn in
individual neuroimaging studies (Box 1).

Ontology development
To identify relations between brain structure and mental
function, it is necessary todescribeboth ina systematicway.
In other fields such as molecular biology and genomics,
cumulative progress has relied heavily upon knowledge
frameworks known as ‘ontologies’ that describe the concep-
tual structure of the domain and provide a basis for the
annotation of data within databases [41–44]. Cognitive
neuroscience currently lacks such consensus frameworks,
and several recent projects havebeen launchedwith the aim
of developing formal ontologies for cognitive neuroscience.
One example is the Cognitive Atlas project (http://
cognitiveatlas.org; Figure 2), which leverages collaborative
social knowledge building to develop a broad knowledge
base that characterizes the state of current thought regard-
ing the relationsbetweenmentalprocessesand tasks.At the
level of task paradigms, the Cognitive Paradigm Ontology
(CogPO)project (http://cogpo.org) is developinga framework
to describe the many variable features of cognitive tasks.
With regard to neural structure, there is a well-established,
albeit incomplete, ontology that is now part of the Founda-
tional Model of Anatomy [45]. All of these efforts are being
united under the NeuroLex neuroscience lexicon (http://
neurolex.org; [46]), which aims to provide a comprehensive
lexicon of terms used in neuroscience.
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The future
The tools and techniques described in the previous section
represent, in many respects, only the first steps towards a
truly cumulative cognitive neuroscience. Going forward,
new tools and technologies will undoubtedly continue to
reshape the way cognitive neuroscientists conduct re-
search. Here we highlight several emerging developments
that could confer important benefits for the field.

Greater automation and standardization of data
reporting and processing
A major limitation of extant coordinate databases and
meta-analysis packages is the need for considerable hu-
man input at multiple stages of processing. This makes it
difficult for databases to keep up with the current litera-
ture, let alone incorporate a large backlog of older studies
[47]. Overcoming this limitation will require a shift toward
greater automation of data gathering and integration.
Short-term efforts toward this goal include ongoing devel-
opment of software supporting the automated extraction of
activation coordinates from published articles (Box 2), as

well as the introduction of ‘best-practice’ standards for
reporting coordinates in published articles [48]. In the
longer term, advances in natural language processing
and text-mining could afford automated and machine-
readable semantic tagging of studies, facilitating more
precise literature searches and eventually perhaps even
fully automated large-scale meta-analyses of the litera-
ture.

Images, not foci
At present, virtually all formal syntheses of the neuroim-
aging literature operate on discrete foci rather than con-
tinuous whole-brain images. From an analytical
standpoint, image-based analyses are unquestionably
superior to foci-based analyses because the former pre-
serve the full range of effect sizes in the data, providing a
substantial power boost while minimizing selection bias
[6,49]. There are, however, two major barriers to wide-
spread adoption of image-based meta-analysis. On the
technical side, databases are needed that can store rich
image data, not only isolated foci, and provide flexible

[(Figure_2)TD$FIG]

Figure 2. A schematic depicting the structure of the Cognitive Atlas. The Cognitive Atlas (http://www.cognitiveatlas.org) aims to formally represent mental concepts and
their relationships to the tasks that are meant to measure them. In this example, a subset of concepts in the domain of executive function is depicted, along with a task (the
stop-signal task) that is thought to measure one of these components. Mental concepts (i.e., any process, representation or concept related to mental function) can be
related to one another in several ways, including basic ontological relations (such as ‘is-a’ and ‘part-of’) as well as temporal precedence relations (‘precedes’) and semantic
relations such synonymy. Tasks are defined in terms of their particular experimental conditions, the contrasts between conditions that generally define experimental
effects, and measured variables (called ‘indicators’). Specific contrasts (e.g. subtractions between conditions) are related to specific mental concepts by the measurement
relation (‘is-measured-by’), which formalizes the relations between mental constructs and task manipulations that are often left implicit in cognitive neuroscience research.
Tasks can also be related to one another in a family-tree relation (derives-from), which represents the ‘task phylogeny’ [54] describing the historical evolution of
psychological tasks.
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search capabilities for the complex metadata needed to
describe experimental results (Box 2). On the sociological
side, researchers must be convinced that the benefits of
freely sharing their images outweigh the costs. These
challenges are significant but not insuperable; in the long
run, we believe that a shift toward image-based data
sharing will offer major benefits to cognitive neuroscience
research.

Open cognitive neuroscience
More generally, we see cognitive neuroscience increasingly
following an open source model, in which both the data and
tools used to generate scientific results are made readily
available. This shift is, in many respects, the logical end-
point of current trends discussed in the preceding sections.
As bandwidth and storage costs continue to fall, central-
ized repositories of both raw and processed data will
become more practical to maintain and access. Increasing

automation of data extraction and visualization, coupled
with the development of new metadata standards and
image-based data repositories, will make it easier for
researchers to locate, obtain and integrate data from mul-
tiple sites, fulfilling the promise of greater data sharing
that funding agencies such as the NIH have long strived
for. In the longer term, we view the development of open
platforms for storing, managing and retrieving data as a
prerequisite for the development of next-generation tools
that will reshape theway cognitive neuroscientists conduct
research (Box 3).

Concluding remarks
The explosive growth of human brain mapping over the
past two decades has raised important challenges for the
field. As the primary literature expands, the need for
powerful tools capable of synthesizing and distilling the
findings of many different studies grows commensurately.

Box 2. The evolution of neuroimaging databases

Databases such as BrainMap and SumsDB currently serve a vital role
in facilitating synthesis of the neuroimaging literature (see main text),
but they also have several important limitations. To extend the
functionality of neuroimaging databases and ensure their continued
evolution, an informal working group named the NeuroImaging Data
Access Group (NIDAG; http://nidag.org) has recently been formed.
The broad aim of NIDAG is to promote rapid, open and efficient
access to the world’s neuroimaging data. Interested neuroimaging
researchers are encouraged to join the group and contribute to its
ongoing projects. Concretely, NIDAG aims to extend existing
databases in several ways, including:
! Automated extraction and coding of activation foci. The need for

extensive manual entry of information has kept databases such as
SumsDB and BrainMap from catching up with the explosive growth
of the primary neuroimaging literature [47]. To overcome this
limitation, pilot software has been developed capable of auto-
matically extracting foci information and metadata from published
journal articles with a relatively high degree of accuracy (http://
nidag.org/tools/). To store and serve the extracted data, a ‘Neuroi-
maging Coordinate Warehouse’ extension to SumsDB is currently
being developed.

! Enhanced metadata. Metadata is information associated with
neuroimaging results (e.g. reported activation coordinates) that
can be used to filter or organize results. Because comprehensive
manual annotation of the entire literature is practically impos-
sible, an approach is being piloted that can ‘tag’ every published
article with a set of words or phrases that occur at an unusually
high frequency within the article text. The resulting tags can then
be used to rapidly identify relevant coordinates in a content-
based manner (cf. [59]). For example, one can request only
coordinates from studies that prominently feature the terms
‘language,’ ‘phonology’ and ‘lexicon’. Pilot efforts indicate that
this simple approach is fast, flexible and effective (http://
nidag.org/tools).

! Image storage. In the long term, we believe the success of
neuroimaging databases will be tied to their ability to store,
manage, and serve whole-brain image volumes rather than discrete
foci (see main text). Achieving this goal will require extensions to
existing databases, as well as the creation of client-side tools (e.g.
plug-ins for widely-used fMRI packages such as SPM and FSL) that
can interface with and upload images to these databases.

Box 3. What will cognitive neuroscience look like 10 years from now?

The bulk of our discussion focuses on current and short-term
developments in cognitive neuroscience. What about the longer
term? How might cognitive neuroscientists accumulate scientific
results and compare them with new findings 10 years from now? Here
is a ‘wish list’ of some possible future developments:
! Fully automated quantitative mapping between cognitive and

neural states. Researchers would upload observed activation maps
to a database as input and receive as output probabilistic estimates
of the psychological states participants are in: essentially, pattern
classification on a large scale. Conversely, one could define a novel
psychological state using structured queries (based on well-
developed psychological ontologies) and obtain a map of the
predicted neural correlates of that state.

! Intelligent preprocessing and analysis pipelines that evaluate the
quality of newly acquired neuroimaging data in relation to large
databases of existing data and flag problems overlooked by
standard quality control tools (e.g. identifying subjects whose
multivariate activation patterns are inconsistent with known
distributions for the task in question).

! Integration or interoperation of neuroimaging databases with other
types of data;.for instance, construction of large, freely accessible
functional genomics repositories that combine behavioral mea-
sures, structural and functional brain imaging, and genomic data,

enabling researchers to construct integrative models that span
genes, brain and behavior.

! Deployment of massive data repositories capable of storing and
serving raw data from 10 s of 1000 s of neuroimaging studies. Such
warehouses could be coupled to high-capacity computing clusters,
enabling researchers to conduct large-scale analyses currently
beyond the reach of individual labs, and supported by web-based
front-ends that allow real-time visualization of results.

! Peer-to-peer data collaboration using distributed authoring and
version control systems adopted from open source software
development (such as git [http://git-scm.com]). Using these sys-
tems, data and code could be shared for each step of an analysis,
along with raw data.

! Integration of ontologies and data sharing methods with fMRI
analysis software. Each experimental condition in an analysis
would be linked to a formal description of the task in a cognitive
ontology such as CogPo (http://cogpo.org), with seamless integra-
tion of the ontology into the software. The cognitive paradigm
would then be linked to the proposed underlying mental processes
in a psychological ontology such as the Cognitive Atlas (http://
cognitiveatlas.org). Because the necessary metadata regarding the
task would be captured in the analysis, this would enable one-click
data sharing from within the analysis software package.
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The present article highlighted the benefits of a synthesis-
oriented research strategy and reviewed several ongoing
efforts to facilitate greater integration of the published
literature. Going forward, such integration will undoubt-
edly accelerate progress in elucidating the neural mechan-
isms that support the full range of human thought, feeling,
and action in health and disease. There is every reason to
push forward energetically on efforts to develop a cumula-
tive science of human brain function.
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